Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Geochem Health ; 46(9): 339, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073464

RESUMO

Irrigation management controls biogeochemical cycles in rice production. Under flooded paddy conditions, arsenic becomes plant-available as iron-reducing conditions ensue, while oxic conditions lead to increased plant availability of Cd in acidic soils. Because Cd enters rice through Mn transporters, we hypothesized that irrigation resulting in intermediate redox could simultaneously limit both As and Cd in rice grain due to As retention in soil and Mn competition for Cd uptake. In a 2 year field study, we used 6 irrigation managements that varied in extent and frequency of inundation, and we observed strong effects of irrigation management on porewater chemistry, soil redox potentials, plant As and Cd concentrations, plant nutrient concentrations, and methane emissions. Plant As decreased with drier irrigation management, but in the grain this effect was stronger for organic As than for inorganic As. Grain organic As, but not inorganic As, was strongly and positively correlated with cumulative methane emissions. Conversely, plant Cd increased under more aerobic irrigation management and grain Cd was negatively correlated with porewater Mn. A hazard index approach showed that in the tested soil with low levels of As and Cd (5.4 and 0.072 mg/kg, respectively), irrigation management could not simultaneously decrease grain As and Cd. Many soil properties, such as reducible As, available Cd, soil pH, available S, and soil organic matter should be considered when attempting to optimize irrigation management when the goal is decreasing the risk of As and Cd in rice grain.


Assuntos
Irrigação Agrícola , Arsênio , Cádmio , Oryza , Poluentes do Solo , Solo , Irrigação Agrícola/métodos , Cádmio/metabolismo , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Oxirredução , Metano
2.
Environ Geochem Health ; 45(11): 8135-8151, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548848

RESUMO

Rice is a global dietary staple and its traditional cultivation under flooded soil conditions leads to accumulation of arsenic (As) in rice grains. Alternate wetting and drying (AWD) is a widely advocated water management practice to achieve lower As concentrations in rice, water savings, and decreased methane emissions. It is not yet clear whether AWD leads to tradeoffs between concentrations of As and micronutrient elements (e.g., zinc, manganese, molybdenum) in rice grain. We analyzed pore water chemistry and rice grain composition data from a field experiment conducted in Arkansas, USA, in 2017 and 2018 to test the hypothesis that AWD will have diverging effects on oxyanion-forming (arsenic, molybdenum) vs. cationic (cadmium, zinc, manganese, copper) trace elements. This was hypothesized to occur via decreases in soil pH and/or precipitation of iron oxide minerals during oxidizing conditions under AWD. Solubility of all trace elements, except zinc, increased in more reducing conditions. Consistent with our hypothesis, AWD tended to increase grain concentrations of cationic elements while decreasing grain concentrations of oxyanionic elements. Decreases in total As in rice grains under AWD were mainly driven by changes in dimethylarsinic concentrations, with negligible changes in inorganic As. Linear mixed-effects modeling showed that effects of AWD on grain composition were more significant in 2017 compared to 2018. These differences may be related to the timing of dry-downs in the developmental stage of rice plants, with dry-downs during the heading stage of rice development leading to larger impacts on grain composition of certain elements. We also observed significant interannual variability in grain elemental composition from continuously-flooded fields and postulate the warmer temperatures in 2018 may have played a role in these differences.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Oligoelementos , Solo/química , Arsênio/análise , Cádmio/análise , Oryza/química , Manganês , Micronutrientes , Molibdênio , Zinco , Água , Poluentes do Solo/análise
3.
Environ Monit Assess ; 195(12): 1420, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932575

RESUMO

The limited availability of phosphorus (P) in the soil, which is affected by soil moisture, has a significant impact on crop production. However, we still do not fully understand how water management and nitrogen (N) addition affect the availability of P in paddy soil. An evaluation of the effects of two water management strategies that is continuous flooding (CF) and alternate wetting and drying (AWD) irrigation along with various nitrogenous fertilizer addition rates (equivalent to 0, 100%, 133%, and 166% recommended dose of N addition) on P availability in paddy soil took place over the course of a 2-year field experiment. The results showed that water management had a significant influence on ferrous iron, microbial biomass P, and soil-available P. However, the addition of N did not affect the availability of P in the soil. When N was added at various rates, AWD consistently reduced the amount of soil-available P compared to CF. This was primarily because AWD increased microbial biomass, which immobilized P and decreased the content of ferrous iron. As a result, the soil's ability to absorb P increased, leading to a decrease in the amount of P available. In conclusion, AWD decreases the amount of available P in paddy soil compared to CF.


Assuntos
Oryza , Água , Fósforo , Nitrogênio , Monitoramento Ambiental , Solo , Ferro , Abastecimento de Água
4.
Plant Cell Environ ; 45(10): 2861-2874, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822342

RESUMO

Drought and nutrient limitations adversely affect crop yields, with below-ground traits enhancing crop production in these resource-poor environments. This review explores the interacting biological, chemical and physical factors that determine rhizosheath (soil adhering to the root system) development, and its influence on plant water uptake and phosphorus acquisition in dry soils. Identification of quantitative trait loci for rhizosheath development indicate it is genetically determined, but the microbial community also directly (polysaccharide exudation) and indirectly (altered root hair development) affect its extent. Plants with longer and denser root hairs had greater rhizosheath development and increased P uptake efficiency. Moreover, enhanced rhizosheath formation maintains contact at the root-soil interface thereby assisting water uptake from drying soil, consequently improving plant survival in droughted environments. Nevertheless, it can be difficult to determine if rhizosheath development is a cause or consequence of improved plant adaptation to dry and nutrient-depleted soils. Does rhizosheath development directly enhance plant water and phosphorus use, or do other tolerance mechanisms allow plants to invest more resources in rhizosheath development? Much more work is required on the interacting genetic, physical, biochemical and microbial mechanisms that determine rhizosheath development, to demonstrate that selection for rhizosheath development is a viable crop improvement strategy.


Assuntos
Fósforo , Água , Fenótipo , Raízes de Plantas , Solo
5.
Sensors (Basel) ; 22(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366116

RESUMO

Rational water and fertilizer management approaches and technologies could improve water use efficiency and fertilizer use efficiency in paddy rice cultivation. A promising water-conserving technology for paddy rice farming is the alternate wetting and drying irrigation system, established by the International Rice Research Institute. However, the strategy has still not been widely adopted, because water level measurement is challenging work and sometimes leads to a decrease in the rice yield. For the easy implementation of alternate wetting and drying among farmers, we analyzed a dataset obtained from a farmer's water management study carried out over a three-year period with three cropping seasons at six locations (n = 82) in An Giang Province, Southern Vietnam. We observed a significant relationship between specific water level management and the rice yield and greenhouse gas emissions during different growth periods. The average water level during the crop period was an important factor in increasing the rice yield and reducing greenhouse gas emissions. The average water level at 2 days after nitrogen fertilization also showed a potential to increase the rice yield. The greenhouse gas emissions were reduced when the number of days of non-flooded soil use was increased by 1 day during the crop period. The results offer insights demonstrating that farmers' implementation of multiple drainage during whole crop period and nitrogen fertilization period has the potential to contribute to both the rice yield increase and reduction in greenhouse gas emissions from rice cultivation.


Assuntos
Gases de Efeito Estufa , Oryza , Fertilizantes/análise , Gases de Efeito Estufa/análise , Água , Vietnã , Agricultura/métodos , Solo , Nitrogênio , Óxido Nitroso/análise , Metano
6.
J Environ Manage ; 307: 114520, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066193

RESUMO

Greenhouse gas (GHG) emissions from agriculture sector play an important role for global warming and climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. The efficient management of nitrogen fertilizer using urea deep placement (UDP) and the use of the water-saving alternate wetting and drying (AWD) irrigation could mitigate greenhouse gas (GHG) emissions and reduce environmental pollution. However, there is a dearth of studies on the impacts of UDP and the integrated plant nutrient system (IPNS) which combines poultry manure and prilled urea (PU) with different irrigation regimes on GHG emissions, nitrogen use efficiency (NUE) and rice yields. We conducted field experiments during the dry seasons of 2018, 2019, and 2020 to compare the effects of four fertilizer treatments including control (no N), PU, UDP, and IPNS in combination with two irrigation systems- (AWD and continuous flooding, CF) on GHG emissions, NUE and rice yield. Fertilizer treatments had significant (p < 0.05) interaction effects with irrigation regimes on methane (CH4) and nitrous oxide (N2O) emissions. PU reduced CH4 and N2O emissions by 6% and 20% compared to IPNS treatment, respectively under AWD irrigation, but produced similar emissions under CF irrigation. Similarly, UDP reduced cumulative CH4 emissions by 9% and 15% under AWD irrigation, and 9% and 11% under CF condition compared to PU and IPNS treatments, respectively. Across the year and fertilizer treatments, AWD irrigation significantly (p < 0.05) reduced cumulative CH4 emissions and GHG intensity by 28%, and 26%, respectively without significant yield loss compared to CF condition. Although AWD irrigation increased cumulative N2O emissions by 73%, it reduced the total global warming potential by 27% compared to CF irrigation. The CH4 emission factor for AWD was lower (1.67 kg ha-1 day-1) compared to CF (2.33 kg ha-1 day-1). Across the irrigation regimes, UDP increased rice yield by 21% and N recovery efficiency by 58% compared to PU. These results suggest that both UDP and AWD irrigation might be considered as a carbon-friendly technology.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Fertilizantes/análise , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo , Água , Abastecimento de Água
7.
Proc Natl Acad Sci U S A ; 115(39): 9720-9725, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201704

RESUMO

Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH4), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N2O), a long-lived greenhouse gas. Based on the belief that minimizing CH4 from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N2O emissions per hectare can be three times higher (33 kg-N2O⋅ha-1⋅season-1) than the maximum previously reported. Correlations between N2O emissions and management parameters suggest that N2O emissions from rice across the Indian subcontinent might be 30-45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N2O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N2O and CH4 emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N2O and CH4 emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.


Assuntos
Mudança Climática , Óxido Nitroso/metabolismo , Oryza/metabolismo , Abastecimento de Água , Produção Agrícola , Gases de Efeito Estufa/metabolismo , Índia
8.
Ecotoxicol Environ Saf ; 185: 109711, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31574369

RESUMO

There have been no controlled systematic studies on the dynamic variation of As in soil - soil porewater - root surface (Fe plaques) - rice plant system under alternate wetting and drying (AWD) irrigation. Therefore, effects of continuous flooding (CF) and AWD treatments (2F2D: 2-day flooding followed by 2-day drying; 7F2D: 7-day flooding followed by 2-day drying) on the migration of As from soil to brown rice were studied. Results indicated that As contents in brown rice of AWD treatments (0.03-0.17 mg/kg) were 43.3%-85.0% lower than CF (0.20-0.30 mg/kg). AWD irrigation promoted the transformation of Fe and associated As in rhizosphere soil from highly active forms (H2O and HCl-extracted Fe-bound As) to stable states (oxalate and DCB-extracted Fe-bound As), which decreased the release of As from rhizosphere soil. The dynamic variation of As contents in porewater was described by a dissolution factor (DF) which decreased significantly in AWD treatments and had a significant positive correlation (R2 = 0.83; P < 0.05) with As contents in brown rice. In addition, contents of Fe and associated As on the root surface were about 17.1% and 11.0% higher in AWD treatments than in CF treatment, respectively, and the transfer factor (TF) of As from root surface into root was 22.7% lower in AWD treatments than in CF. In summary, AWD irrigation reduced As contents in porewater through decreasing availability of As in rhizosphere soil; and AWD also reduced the transfer of As into rice roots through promoting As sequestration by Fe plaques on root surface.


Assuntos
Irrigação Agrícola/métodos , Arsênio/análise , Oryza/crescimento & desenvolvimento , Rizosfera , Poluentes do Solo/análise , Solo/química , Arsênio/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo
9.
Proteomics ; 16(1): 102-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26442785

RESUMO

Poor grain filling of later-flowering inferior spikelets is a serious problem in modern rice cultivars, but the reason and regulation remain unclear. This study investigated post-anthesis protein expression in relation with grain filling and the possibility to use irrigation methods to enhance grain filling through regulating protein expression. One japonica rice cultivar was field-grown under three irrigation treatments imposed during the grain filling period: alternate wetting and moderate soil-drying (WMD), alternate wetting and severe soil-drying (WSD), and conventional irrigation. High resolution 2DE, combined with MALDI/TOF, was used to compare differential protein expression between superior and inferior spikelets. Results showed that the expression of proteins that function in photosynthesis, carbohydrate and energy metabolism, amino acids metabolism and defense responses were largely down-regulated in inferior spikelets compared to those in superior spikelets. The WMD treatment enhanced grain filling rate and the expression of these proteins, whereas the WSD treatment decreased them. Similar results were observed for transcript levels of the genes encoding these proteins. These results suggest that down-regulated expression of the proteins associated with grain filling contribute to the poor grain filling of inferior spikelets, and post-anthesis WMD could improve grain filling through regulating protein expression in the spikelets.


Assuntos
Irrigação Agrícola , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Irrigação Agrícola/métodos , Proteínas de Plantas/análise , Proteômica
10.
J Exp Bot ; 66(8): 2239-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25628330

RESUMO

Soil drying and re-wetting (DRW) occurs at varying frequencies and intensities during crop production, and is deliberately used in water-saving irrigation techniques that aim to enhance crop water use efficiency. Soil drying not only limits root water uptake which can (but not always) perturb shoot water status, but also alters root synthesis of phytohormones and their transport to shoots to regulate leaf growth and gas exchange. Re-wetting the soil rapidly restores leaf water potential and leaf growth (minutes to hours), but gas exchange recovers more slowly (hours to days), probably mediated by sustained changes in root to shoot phytohormonal signalling. Partial rootzone drying (PRD) deliberately irrigates only part of the rootzone, while the remainder is allowed to dry. Alternating these wet and dry zones (thus re-wetting dry soil) substantially improves crop yields compared with maintaining fixed wet and dry zones or conventional deficit irrigation, and modifies phytohormonal (especially abscisic acid) signalling. Alternate wetting and drying (AWD) of rice can also improve yield compared with paddy culture, and is correlated with altered phytohormonal (including cytokinin) signalling. Both PRD and AWD can improve crop nutrition, and re-wetting dry soil provokes both physical and biological changes which affect soil nutrient availability. Whether this alters crop nutrient uptake depends on competition between plant and microbes for nutrients, with the rate of re-wetting determining microbial dynamics. Nevertheless, studies that examine the effects of soil DRW on both crop nutritional and phytohormonal responses are relatively rare; thus, determining the cause(s) of enhanced crop yields under AWD and PRD remains challenging.


Assuntos
Irrigação Agrícola , Dessecação , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Solo , Transdução de Sinais/efeitos dos fármacos
11.
Glob Chang Biol ; 21(1): 407-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25099317

RESUMO

Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD--flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice. Various treatments ranging in frequency and duration of AWD practices were evaluated at three locations over 2 years. Relative to the flooded control treatment and depending on the AWD treatment, yields were reduced by <1-13%; water-use efficiency was improved by 18-63%, global warming potential (GWP of CH4 and N2 O emissions) reduced by 45-90%, and grain As concentrations reduced by up to 64%. In general, as the severity of AWD increased by allowing the soil to dry out more between flood events, yields declined while the other benefits increased. The reduction in GWP was mostly attributed to a reduction in CH4 emissions as changes in N2 O emissions were minimal among treatments. When AWD was practiced early in the growing season followed by flooding for remainder of season, similar yields as the flooded control were obtained but reduced water use (18%), GWP (45%) and yield-scaled GWP (45%); although grain As concentrations were similar or higher. This highlights that multiple environmental benefits can be realized without sacrificing yield but there may be trade-offs to consider. Importantly, adoption of these practices will require that they are economically attractive and can be adapted to field scales.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Arsênio/análise , Efeito Estufa/prevenção & controle , Oryza/química , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Arkansas , Dióxido de Carbono/metabolismo , Modelos Estatísticos , Sementes/química
12.
Environ Pollut ; 347: 123786, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484962

RESUMO

Water management in paddy soils can effectively reduce the soil-to-rice grain transfer of either As or Cd, but not of both elements simultaneously due to the higher mobility of As under reducing and Cd under oxidizing soil conditions. Limestone amendment, the common form of liming, is well known for decreasing Cd accumulation in rice grown on acidic soils. Sulfate amendment was suggested to effectively decrease As accumulation in rice, especially under intermittent soil flooding. To study the unknown effects of combined sulfate and limestone amendment under intermittent flooding for simultaneously decreasing As and Cd in rice, we performed a pot experiment using an acidic sandy loam paddy soil. We also included a clay loam paddy soil to study the role of soil texture in low-As rice production under intermittent flooding. We found that liming not only decreased rice Cd concentrations but also greatly decreased dimethylarsenate (DMA) accumulation in rice. We hypothesize that this is due to suppressed sulfate reduction, As methylation, and As thiolation by liming in the sulfate-amended soil and a higher share of deprotonated DMA at higher pH which is taken up less readily than protonated DMA. Decreased gene abundance of potential soil sulfate-reducers by liming further supported our hypothesis. Combined sulfate and limestone amendment to the acidic sandy loam soil produced rice with 43% lower inorganic As, 72% lower DMA, and 68% lower Cd compared to the control soil without amendment. A tradeoff between soil aeration and water availability was observed for the clay loam soil, suggesting difficulties to decrease As in rice while avoiding plant water stress under intermittent flooding in fine-textured soils. Our results suggest that combining sulfate amendment, liming, and intermittent flooding can help to secure rice safety when the presence of both As and Cd in coarse-textured soils is of concern.


Assuntos
Arsênio , Compostos de Cálcio , Oryza , Óxidos , Poluentes do Solo , Cádmio/análise , Arsênio/análise , Carbonato de Cálcio , Solo , Sulfatos , Argila , Óxidos de Enxofre , Areia , Poluentes do Solo/análise
13.
J Hazard Mater ; 458: 131989, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453357

RESUMO

Microplastics (MPs) broadly coexist with heavy metals (HMs) in soil, Cd and Cu are the main types of soil HMs contamination, in addition to polystyrene (PS), which is also widely present in the environment and prone to aging. However, differences in the effects of MPs and HMs on soil properties and microbial characteristics under alternating wetting and drying (AWD) remain unclear. Thus, this study investigated the effects of four conventional (0.2% (w/w)) and aged MPs in indoor incubation experiments on soil properties under desiccation (Dry) and AWD. We found that with the influence of the "enzyme lock" theory, the coexistence of MPs and HMs under Dry had a more pronounced effect on soil physicochemical properties, whereas the effects on soil enzyme activity under AWD were more significant. In addition, MPs decreased the available Cu by 4.27% and, conversely, increased the available Cd by 8.55%. Under Dry, MPs affected microbial function mainly through physicochemical properties, with a contribution of approximately 72.4%, whereas under AWD enzyme activity and HMs were significantly greater, with increases of 28.2% and 7.9%, respectively. These results indicate that the effects of MPs on environmental variation and microbial profiles under AWD conditions differed significantly from those under Dry.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Microplásticos/toxicidade , Plásticos , Cádmio/toxicidade , Solo/química , Metais Pesados/toxicidade , Metais Pesados/análise , Poluentes do Solo/análise
14.
Sci Total Environ ; 904: 166279, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586506

RESUMO

Clinoptilolite zeolite has been widely used in agricultural production systems for enhancing water and fertilizer savings, mitigating greenhouse gas emissions, and increasing yield. However, there is little information on field-aged effects of zeolite on reactive gaseous N losses under alternate wetting and drying irrigation (AWD). We conducted a five-year field experiment to investigate field-aged effect of natural zeolite addition at 0 (Z0), 5 (Z5), and 10 (Z10) t ha-1 on reactive gaseous N losses (NH3, N2O), N-related global warming potential (GWPN), soil properties and grain yield under two irrigation regimes (CF: continuous flooding irrigation; AWD) in the 4th (2020) and 5th (2021) years since its initial application in 2017. As compared with CF, AWD did not significantly affect grain yield and NH3 volatilization but increased seasonal N2O emissions by 46 %-71 % over two years. Zeolite increased rice yield for five consecutive years. Z10 reduced averaged cumulative NH3 volatilization and GWPN by 23 % and 26 %, compared to zeolite-free treatment, respectively, in the 4th and 5th years. Soil NH4+-N was increased with the increased rate of Z application under both CF and AWD. Z10 increased soil NH4+-N by 27 %-38 % and NO3--N by 14 %-22 % in five years, compared to Z0, respectively. Compared to AWD without zeolite, the addition of 10 t ha-1 zeolite under AWD lowered NH3 volatilization, cumulative N2O emissions, and GWPN by an average of 28 %, 29 %, and 30 % in two years, respectively. IAWDZ10 did not differ from ICFZ0 on reactive gaseous N losses but significantly lowered reactive gaseous losses relative to IAWDZ0. Therefore, zeolite addition could mitigate the reactive gaseous N losses and GWPN for at least five years after initial application, which is beneficial to promoting zeolite application and ensuring sustainable agriculture.

15.
Chemosphere ; 297: 134147, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240148

RESUMO

The accumulation of trace elements in rice, such as antimony (Sb), has drawn special attention owing to the potential increased risk to human health. However, the effects of two common irrigation methods, alternate wetting and drying and continuous flooding, on Sb behaviors and subsequent accumulation in rice is unclear. In this study a pot experiment with various Sb additions (0, 50, 200, 1000 mg Sb kg-1) was carried out with these two irrigation methods in two contrasting paddy soils (an Anthrosol and a Ferralic Cambisol). The dynamics of Sb in soil porewater indicated that continuous flooding generally immobilized more Sb than alternate wetting and drying, concomitant with a pronounced reduction of Sb(V) in porewater. However, a higher phytoavailable fraction of Sb was observed under continuous flooding. The content of Sb in the rice plant decreased in the order of root > shoot > husk > grain, and continuous flooding facilitated Sb accumulation in rice root and shoot as compared with alternate wetting and drying. The differences of Sb content in root, shoot, and husk between the two irrigation methods was smaller in aboveground parts, and almost no difference in Sb was observed in grain between the two methods. The findings of this study facilitates the understanding of Sb speciation and behavior in soils with these common yet different water management regimes.


Assuntos
Oryza , Poluentes do Solo , Antimônio/análise , Grão Comestível/química , Inundações , Humanos , Solo , Poluentes do Solo/análise
16.
Sci Total Environ ; 842: 156958, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760167

RESUMO

For sustainable food production in the Mekong Delta, greenhouse gas (GHG) emissions from rice cropping activities need to be reduced without sacrificing rice productivity. Each year, a substantial amount of straw is incorporated into paddy soils through triple rice cropping, which is characterized by a short cropping period and nearly year-round flooding, such that a large amount of methane is emitted. Exposing these soils to oxidative conditions by altering the cropping-period water regime might have the potential to reduce GHG emissions with increased rice yield. To test this potential, a split-plot experiment was conducted in a typical triple-cropped alluvial farmer's paddy in a central delta area over five years and 15 consecutive cropping seasons. The emissions observed from the continuously inundated paddies were 1.1-2.7 times greater than the reported emission factors for Vietnamese continuously inundated paddies. A significantly higher emission peak was detected at the beginning of the rice cropping and flooding fallow periods in continuously flooded (CF) paddies than in alternate wetting and drying (AWD) paddies, although the differences in field water level and soil moisture among the paddies were negligible. AWD reduced annual methane emissions (-51 %) and increased rice yield (+9 %), presumably through enhanced translocation of carbohydrates from leaves to panicles. The amount of GHGs emitted from straw use also decreased (11 %) under AWD management because the straw production rate was significantly lowered (9 %) by enhanced nutrient translocation. These results indicate that GHG emission reduction potentials in the Mekong Delta have been underestimated by previous studies, corroborate the necessity of additional long-term observations of triple rice cropping systems and demonstrate the need for a robust methodology for monitoring the permanence of AWD effects after policies promoting its widespread dissemination take effect.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura/métodos , Metano/análise , Óxido Nitroso/análise , Solo , Água
17.
Sci Total Environ ; 838(Pt 4): 156067, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35605853

RESUMO

Clinoptilolite zeolite (Z) has been widely used for reducing nutrient loss and improving crop productivity. However, the impacts of zeolite addition on CH4 and N2O emissions in rice fields under various irrigation regimes are still unclear. Therefore, a three-year field experiment using a split-plot design evaluated the effects of zeolite addition and irrigation regimes on greenhouse gas (GHG) emissions, grain yield, water productivity and net ecosystem economic profit (NEEP) in a paddy field. The field experiment included two irrigation regimes (CF: continuous flooding irrigation; AWD: alternate wetting and drying irrigation) as the main plots, and three zeolite additions (0, 5 and 10 t ha-1) as the subplots. The results indicated that AWD regime decreased seasonal cumulative CH4 emissions by 54%-71% while increasing seasonal cumulative N2O emissions by 14%-353% across the three years, compared with CF regime. Consequently, the yield-scaled global warming potential under AWD regime decreased by 10%-60% while grain yield, water productivity and NEEP improving by 4.9%-7.9%, 19%-27% and 12%-14%, respectively, related to CF regime. Furthermore, 5 t ha-1 zeolite addition mitigated seasonal cumulative CH4 emissions by an average of 36%, but did not significantly affect N2O emissions compared with non-zeolite treatment. In addition, zeolite addition at 5 and 10 t ha-1 significantly increased grain yield, water productivity and NEEP by 11%-21%, 13%-20% and 13%-24%, respectively, related to non-zeolite treatment across the three years. Therefore, zeolite addition at 5 t ha-1 coupled with AWD regime could be an eco-economic strategy to mitigate GHG emissions and water use while producing optimal grain yield with high NEEP in rice fields.


Assuntos
Gases de Efeito Estufa , Oryza , Zeolitas , Agricultura/métodos , Ecossistema , Grão Comestível/química , Fertilizantes , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo , Água
18.
Sci Total Environ ; 839: 156245, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644407

RESUMO

Arsenic exposure through rice consumption is a growing concern. Compared to Continuous Flooding (CF), irrigation practices that dry the soil at least once during the growing season [referred to here as Alternate Wetting and Drying (AWD)] can decrease As accumulation in grain; however, this can simultaneously increase grain Cd to potentially unsafe levels. We modelled grain As and Cd from field studies comparing AWD and CF to identify optimal AWD practices to minimize the accumulation of As and Cd in grain. The severity of soil drying during AWD drying event(s), quantified as soil water potential (SWP), was the main factor leading to a reduction in grain total As and inorganic As, compared to CF. However, lower SWP levels were necessary to decrease grain inorganic As, compared to total As. Therefore, if the goal is to decrease grain inorganic As, the soil needs to be dried further than it would for decreasing total As alone. The main factor driving grain Cd accumulation was when AWD was practiced during the season. Higher grain Cd levels were observed when AWD occurred during the early reproductive stage. Further, higher Cd levels were observed when AWD spanned multiple rice growth stages, compared to one stage. If Cd levels are concerning, the minimum trade-off between total As and Cd accumulation in rice grain occurred when AWD was implemented at a SWP of -47 kPa during one stage other than the early reproductive. While these results are not meant to be comprehensive of all the interactions affecting the As and Cd dynamics in rice systems, they can be used as a first guide for implementing AWD practices with the goal of minimizing the accumulation of As and Cd in rice grain.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Irrigação Agrícola/métodos , Arsênio/análise , Cádmio , Grão Comestível/química , Solo , Poluentes do Solo/análise , Água , Abastecimento de Água
19.
Front Plant Sci ; 13: 1077152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531393

RESUMO

Natural abundance of the stable isotope (δ13C and δ15N) in plants is widely used to indicate water use efficiency (WUE). However, soil water and texture properties may affect this relationship, which remains largely elusive. Therefore, the purpose of this study was to evaluate δ13C as affected by different combinations of alternate wetting and drying irrigation (AWD) with varied soil clay contents in different organs and whole plant and assess the feasibility of using δ13C and δ15N as a physiological indicator of whole-plant water use efficiency (WUEwhole-plant). Three AWD regimes, I100 (30 mm flooded when soil reached 100% saturation), I90 (30 mm flooded when reached 90% saturation) and I70 (30 mm flooded when reached 70% saturation) and three soil clay contents, 40% (S40), 50% (S50), and 60% (S60), were included. Observed variations in WUEwhole-plant did not conform to theoretical expectations of the organs δ13C (δ13Corgans) of plant biomass based on pooled data from all treatments. However, a positive relationship between δ13Cleaf and WUEET (dry biomass/evapotranspiration) was observed under I90 regime, whereas there were no significant relationships between δ13Corgans and WUEET under I100 or I70 regimes. Under I100, weak relationships between δ13Corgans and WUEET could be explained by (i) variation in C allocation patterns under different clay content, and (ii) relatively higher rate of panicle water loss, which was independent of stomatal regulation and photosynthesis. Under I70, weak relationships between δ13Corgans and WUEET could be ascribed to (i) bigger cracks induced by water-limited irrigation regime and high clay content soil, and (ii) damage caused by severe drought. In addition, a negative relationship was observed between WUEwhole-plant and shoot δ15N (δ15Nshoot) across the three irrigation treatments, indicating that WUEwhole-plant is tightly associated with N metabolism and N isotope discrimination in rice. Therefore, δ13C should be used cautiously as an indicator of rice WUEwhole-plant at different AWD regimes with high clay content, whereas δ15N could be considered an effective indicator of WUEwhole-plant.

20.
Sci Total Environ ; 830: 154724, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35331759

RESUMO

Water-saving irrigation and controlled-release nitrogen fertilizer are used in rice farming. The aim of this study was to understand the effects of water-saving irrigation and controlled-release urea on methane (CH4) emission and its associated microbial communities and function. A field experiment was conducted with two nitrogen treatments (NU 100% normal urea, CU 60% normal urea and 40% controlled-release urea, total N amount was the same) and three irrigation modes (CI continuous flooding irrigation, AI alternate wetting and drying irrigation, RI ridge irrigation). CH4 fluxes, organic acid contents and enzyme activities were measured, and soil microbial communities and function were investigated by whole-genome shotgun sequencing analysis, and then their relationships were analyzed by Spearman correlation analysis, redundancy analysis and mantel test. Compared to CI, AI and RI decreased cumulative CH4 emissions by 43.5% and 25.8% in NU, and 64.9% and 13.3% in CU, respectively. Among all treatments, AICU had the lowest CH4 emission and reduced it by 72.2% compared to CINU. AI and RI had higher contents of some organic acids than CI. Compared to CINU, AICU decreased the relative abundance of Methanosarcina barkeri and associated genes in the CO2-reduction methanogenesis pathway by 83.4% and 91.0%. Both abundance of methanogens and associated genes in the CO2-reduction methanogenesis pathway were positively correlated with cumulative CH4 emission, but negatively correlated with most soil organic acids. Thus AICU can mitigate CH4 emission by decreasing the abundance of methanogens and associated genes in the CO2-reduction methanogenesis pathway.


Assuntos
Microbiota , Oryza , Agricultura , Dióxido de Carbono , Preparações de Ação Retardada , Metano , Nitrogênio , Óxido Nitroso/análise , Solo , Ureia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA