Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(13): 2693-2704.e12, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964204

RESUMO

The assembly of nascent proteins into multi-subunit complexes is a tightly regulated process that must occur at high fidelity to maintain cellular homeostasis. The ER membrane protein complex (EMC) is an essential insertase that requires seven membrane-spanning and two soluble cytosolic subunits to function. Here, we show that the kinase with no lysine 1 (WNK1), known for its role in hypertension and neuropathy, functions as an assembly factor for the human EMC. WNK1 uses a conserved amphipathic helix to stabilize the soluble subunit, EMC2, by binding to the EMC2-8 interface. Shielding this hydrophobic surface prevents promiscuous interactions of unassembled EMC2 and directly competes for binding of E3 ubiquitin ligases, permitting assembly. Depletion of WNK1 thus destabilizes both the EMC and its membrane protein clients. This work describes an unexpected role for WNK1 in protein biogenesis and defines the general requirements of an assembly factor that will apply across the proteome.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Retículo Endoplasmático/genética , Células HeLa , Humanos , Complexos Multiproteicos/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética
2.
Trends Biochem Sci ; 47(1): 39-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583871

RESUMO

Lipid droplets (LDs) are the main organelles for lipid storage, and their surfaces contain unique proteins with diverse functions, including those that facilitate the deposition and mobilization of LD lipids. Among organelles, LDs have an unusual structure with an organic, hydrophobic oil phase covered by a phospholipid monolayer. The unique properties of LD monolayer surfaces require proteins to localize to LDs by distinct mechanisms. Here we review the two pathways known to mediate direct LD protein localization: the CYTOLD pathway mediates protein targeting from the cytosol toLDs, and the ERTOLD pathway functions in protein targeting from the endoplasmic reticulum toLDs. We describe the emerging principles for each targeting pathway in animal cells and highlight open questions in the field.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Transporte Proteico , Proteínas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(8): e2212513120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780528

RESUMO

The Sar1 GTPase initiates coat protein II (COPII)-mediated protein transport by generating membrane curvature at subdomains on the endoplasmic reticulum, where it is activated by the guanine nucleotide exchange factor (GEF) Sec12. Crystal structures of GDP- and GTP-bound forms of Sar1 suggest that it undergoes a conformational switch in which GTP binding enhances the exposure of an amino-terminal amphipathic helix necessary for efficient membrane penetration. However, key residues in the amino terminus were not resolved in crystal structures, and experimental studies have suggested that the amino terminus of Sar1 is solvent-exposed in the absence of a membrane, even in the GDP-bound state. Therefore, the molecular mechanism by which GTP binding activates the membrane-remodeling activity of Sar1 remains unclear. Using atomistic molecular dynamics simulations, we compare the membrane-binding and curvature generation activities of Sar1 in its GDP- and GTP-bound states. We show that in the GTP-bound state, Sar1 inserts into the membrane with its complete (residues 1 to 23) amphipathic amino-terminal helix, while Sar1-GDP binds to the membrane only through its first 12 residues. Such differential membrane-binding modes translate into significant differences in the protein volume inserted into the membrane. As a result, Sar1-GTP generates positive membrane curvature 10 to 20 times higher than Sar1-GDP. Dimerization of the GTP-bound form of Sar1 further amplifies curvature generation. Taken together, our results present a detailed molecular mechanism for how the nucleotide-bound state of Sar1 regulates its membrane-binding and remodeling activities in a concentration-dependent manner, paving the way toward a better understanding COPII-mediated membrane transport.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Dimerização , Guanosina Trifosfato/metabolismo , Transporte Proteico , Fatores de Troca do Nucleotídeo Guanina/metabolismo
4.
Traffic ; 23(1): 63-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34729868

RESUMO

Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.


Assuntos
Retículo Endoplasmático , Hepatite C , Retículo Endoplasmático/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Triglicerídeos/metabolismo , Proteínas do Core Viral/metabolismo
5.
Mol Microbiol ; 120(5): 702-722, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748926

RESUMO

Lipid droplets (LDs) are storage organelles for neutral lipids which are critical for lipid homeostasis. Current knowledge of fungal LD biogenesis is largely limited to budding yeast, while LD regulation in multinucleated filamentous fungi which exhibit considerable metabolic activity remains unexplored. In this study, 19 LD-associated proteins were identified in the multinucleated species Aspergillus oryzae using a colocalization screening of a previously established enhanced green fluorescent protein (EGFP) fusion library. Functional screening identified 12 lipid droplet-regulating (LDR) proteins whose loss of function resulted in irregular LD biogenesis, particularly in terms of LD number and size. Bioinformatics analysis, targeted mutagenesis, and microscopy revealed four LDR proteins that localize to LD via the putative amphipathic helices (AHs). Further analysis revealed that LdrA with an Opi1 domain is essential for cytoplasmic and nuclear LD biogenesis involving a novel AH. Phylogenetic analysis demonstrated that the patterns of gene evolution were predominantly based on gene duplication. Our study identified a set of novel proteins involved in the regulation of LD biogenesis, providing unique molecular and evolutionary insights into fungal lipid storage.


Assuntos
Gotículas Lipídicas , Proteínas , Gotículas Lipídicas/metabolismo , Filogenia , Proteínas/metabolismo , Metabolismo dos Lipídeos/genética , Fungos/metabolismo , Lipídeos
6.
Small ; : e2309053, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602194

RESUMO

Liquid crystals (LCs) are emerging as novel platforms for chemical, physical, and biological sensing. They can be used to detect biological amphiphiles such as lipids, fatty acids, digestive surfactants, and bacterial endotoxins. However, designing LC-based sensors in a manner that preserves their sensitivity and responsiveness to these stimuli, and possibly improves biocompatibility, remains challenging. In this work, the stabilization of LC droplets by oleosins, plant-sourced and highly surface active proteins due to their extended amphipathic helix, is investigated. Purified oleosins, at sub-micromolar concentrations, are shown to readily stabilize nematic LC droplets without switching their alignment, allowing them to detect surfactants at micromolar concentrations. Direct evidence of localization of oleosins at the LC-water interface is provided with fluorescent labeling, and the stabilized droplets remain stable over months. Interestingly, chiral LC droplets readily switch in the presence of nanomolar oleosin concentrations, an unexpected behavior that is explained by accounting for the energy barriers required for switching the alignment between the two cases. This leads thus to a twofold conclusion: oleosin-stabilized nematic LC droplets present a biocompatible alternative for bioanalyte detection, while chiral LCs can be further investigated for use as highly sensitive sensors for detecting amphipathic helices in biological systems.

7.
Proteomics ; 23(15): e2200301, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37069743

RESUMO

Over the past decade, the majority of the mammalian genome considered to be noncoding has been revealed to be able to produce proteins. Many RNA molecules, mis-annotated as noncoding, actually are predicted to code for proteins. Some of those proteins have been identified and verified to play critical roles in multiple biological processes. The lipid droplet (LD) is a unique cellular organelle bound with a phospholipid monolayer membrane, and is closely associated with cellular lipid metabolism and metabolic disorders. However, it is still unclear how a protein targets to LDs. Here we identified a new protein on LDs, LDANP2, which is encoded by noncoding RNA, through a proteomics-based strategy. The key sequence for its localization on LDs, Truncation 3, is predicted to form an amphipathic helix. Surprisingly, the deletion of the first amino acid in Truncation 3 resulted in mitochondrial localization. How the types of amino acids would determine the LD or mitochondrial localizations of the protein was studied. The findings introduce a useful strategy to mine for new proteins and would provide clues to the understanding of how a protein would find its right organelle, with phospholipid monolayer or bilayer membrane.


Assuntos
Aminoácidos , Gotículas Lipídicas , Animais , Gotículas Lipídicas/metabolismo , Aminoácidos/análise , Proteínas/metabolismo , Fosfolipídeos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mamíferos/metabolismo
8.
J Biol Chem ; 298(7): 102136, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714773

RESUMO

Tumor protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54, and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g., COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, CD spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane-sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an amphipathic lipid packing sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and ALPS-independent mechanisms.


Assuntos
Lipossomos , Proteínas de Neoplasias , Lipídeos , Lipossomos/química , Membranas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Vesículas Transportadoras/metabolismo
9.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36161489

RESUMO

To investigate correlation between the ameloblastin (Ambn) amino acid sequence and the emergence of prismatic enamel, a notable event in the evolution of ectodermal hard tissues, we analyzed Ambn sequences of 53 species for which enamel microstructures have been previously reported. We found that a potential amphipathic helix (AH) within the sequence encoded by Exon 5 of Ambn appeared in species with prismatic enamel, with a few exceptions. We studied this correlation by investigating synthetic peptides from different species. A blue shift in fluorescence spectroscopy suggested that the peptides derived from mammalian Ambn interacted with liposomes. A downward shift at 222 nm in circular dichroism spectroscopy of the peptides in the presence of liposomes suggested that the peptides of mammals with prismatic enamel underwent a transition from disordered to helical structure. The peptides of species without prismatic enamel did not show similar secondary structural changes in the presence of liposomes. Peptides of mammals with prismatic enamel caused liposome leakage and inhibited LS8 and ALC cell spreading regulated by full-length Ambn. RT-PCR showed that AH is involved in Ambn's regulation of cell polarization genes: Vangl2, Vangl1, Prickle1, ROCK1, ROCK2, and Par3. Our comprehensive sequence analysis clearly demonstrates that AH motif is closely related to the emergence of enamel prismatic structure, providing insight into the evolution of complex enamel microstructure. We speculate that the AH motif evolved in mammals to interact with cell membrane, triggering signaling pathways required for specific changes in cell morphology associated with the formation of enamel prismatic structure.


Assuntos
Lipossomos , Mamíferos , Animais , Sequência de Aminoácidos , Éxons
10.
Amino Acids ; 55(11): 1531-1544, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737904

RESUMO

Insect venom is abundant in potential antimicrobial peptides (AMPs), which can serve as novel alternatives to conventional antibiotics. Among them, Lasioglossin III LL-III) is a promising candidate with a broad spectrum against many fungi strains and both types of bacteria, whereas almost non-toxic to red blood cells. Many chemical approaches have been recently applied to improve its pharmacological properties and provide useful information regarding structure-activity relationships. Hence, this review focused on highlighting the lesson learned from each modification and supporting the future design of potent, selective, and metabolically stable AMPs.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
11.
Adv Exp Med Biol ; 1415: 533-537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440083

RESUMO

The visual cycle is a complex biological process that involves the sequential action of proteins in the retinal pigment epithelial (RPE) cells and photoreceptors to modify and shuttle visual retinoids. A majority of the visual cycle proteins are membrane proteins, either integral or peripheral membrane proteins. Despite significant progress in understanding their physiological function, very limited structural information is available for the visual cycle proteins. Moreover, the mechanism of membrane interaction is not yet clear in all cases. Here, we demonstrate the presence of an amphipathic helix in selected RPE visual cycle proteins, using in silico tools, and highlight their role in membrane association and function.


Assuntos
Epitélio Pigmentado da Retina , Retinoides , Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , cis-trans-Isomerases
12.
Proc Natl Acad Sci U S A ; 117(7): 3583-3591, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015120

RESUMO

The matrix-2 (M2) protein from influenza A virus is a tetrameric, integral transmembrane (TM) protein that plays a vital role in viral replication by proton flux into the virus. The His37 tetrad is a pH sensor in the center of the M2 TM helix that activates the channel in response to the low endosomal pH. M2 consists of different regions that are believed to be involved in membrane targeting, packaging, nucleocapsid binding, and proton transport. Although M2 has been the target of many experimental and theoretical studies that have led to significant insights into its structure and function under differing conditions, the main mechanism of proton transport, its conformational dynamics, and the role of the amphipathic helices (AHs) on proton conductance remain elusive. To this end, we have applied explicit solvent constant pH molecular dynamics using the multisite λ-dynamics approach (CpHMDMSλD) to investigate the buried ionizable residues comprehensively and to elucidate their effect on the conformational transition. Our model recapitulates the pH-dependent conformational transition of M2 from closed to open state when the AH domain is included in the M2 construct, revealing the role of the amphipathic helices on this transition and shedding light on the proton-transport mechanism. This work demonstrates the importance of including the amphipathic helices in future experimental and theoretical studies of ion channels. Finally, our work shows that explicit solvent CpHMDMSλD provides a realistic pH-dependent model for membrane proteins.


Assuntos
Vírus da Influenza A/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Motivos de Aminoácidos , Transporte Biológico , Concentração de Íons de Hidrogênio , Vírus da Influenza A/química , Vírus da Influenza A/genética , Cinética , Estrutura Secundária de Proteína , Prótons , Proteínas da Matriz Viral/genética
13.
Semin Cell Dev Biol ; 108: 4-13, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32201131

RESUMO

Lipid droplets (LDs), or oil bodies in plants, are specialized organelles that primarily serve as hubs of cellular metabolic energy storage and consumption. These ubiquitous cytoplasmic organelles are derived from the endoplasmic reticulum (ER) and consist of a hydrophobic neutral lipid core - mainly consisting of triglycerides and sterol esters - that is encircled by a phospholipid monolayer. The dynamic metabolic functions of the LDs are mainly executed and regulated by proteins on the monolayer surface. However, its unique architecture puts some structural constraints on the types of proteins that can associate with LDs. The lipid monolayer is decorated with either peripheral proteins or with integral membrane proteins that adopt a monotopic topology. Due to its oil-water interface, which is energetically costly, the LD surface happens to be favorable to the recruitment of many proteins involved in metabolic but also non-metabolic functions. We only started very recently to understand biophysical and biochemical principles controlling protein targeting to LDs. This review aims to summarize the most recent findings regarding this topic and proposes directions that will potentially lead to a better understanding of LD surface characteristics, as compared to bilayer membranes, and how that impacts protein-LD interactions.


Assuntos
Fenômenos Biofísicos , Gotículas Lipídicas/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Transporte Proteico , Proteoma/metabolismo
14.
J Biol Chem ; 295(51): 17770-17780, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454013

RESUMO

Bacterial low-copy-number plasmids require partition (par) systems to ensure their stable inheritance by daughter cells. In general, these systems consist of three components: a centromeric DNA sequence, a centromere-binding protein and a nucleotide hydrolase that polymerizes and functions as a motor. Type III systems, however, segregate plasmids using three proteins: the FtsZ/tubulin-like GTPase TubZ, the centromere-binding protein TubR and the MerR-like transcriptional regulator TubY. Although the TubZ filament is sufficient to transport the TubR-centromere complex in vitro, TubY is still necessary for the stable maintenance of the plasmid. TubY contains an N-terminal DNA-binding helix-turn-helix motif and a C-terminal coiled-coil followed by a cluster of lysine residues. This study determined the crystal structure of the C-terminal domain of TubY from the Bacillus cereus pXO1-like plasmid and showed that it forms a tetrameric parallel four-helix bundle that differs from the typical MerR family proteins with a dimeric anti-parallel coiled-coil. Biochemical analyses revealed that the C-terminal tail with the conserved lysine cluster helps TubY to stably associate with the TubR-centromere complex as well as to nonspecifically bind DNA. Furthermore, this C-terminal tail forms an amphipathic helix in the presence of lipids but must oligomerize to localize the protein to the membrane in vivo. Taken together, these data suggest that TubY is a component of the nucleoprotein complex within the partitioning machinery, and that lipid membranes act as mediators of type III systems.


Assuntos
Proteínas de Bactérias/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Membrana Celular/química , Membrana Celular/metabolismo , Centrômero/metabolismo , Cristalografia por Raios X , DNA/química , Sequências Hélice-Volta-Hélice , Modelos Moleculares , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência
15.
J Membr Biol ; 254(3): 243-257, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33427942

RESUMO

Stable maintenance and partitioning of the 'Fertility' plasmid or the F plasmid in its host Escherichia coli require the function of a ParA superfamily of proteins known as SopA. The mechanism by which SopA mediates plasmid segregation is well studied. SopA is a nucleoid-binding protein and binds DNA in an ATP-dependent but sequence non-specific manner. ATP hydrolysis stimulated by the binding of the SopBC complex mediates the release of SopA from the nucleoid. Cycles of ATP-binding and hydrolysis generate an ATPase gradient that moves the plasmid through a chemophoresis force. Nucleoid binding of SopA thus assumes a central role in its plasmid-partitioning function. However, earlier work also suggests that the F plasmid can be partitioned into anucleate cells, thus implicating nucleoid independent partitioning. Interestingly, SopA is also reported to be associated with the inner membrane of the bacteria. Here, we report the identification of a possible membrane-targeting sequence, a predicted amphipathic helix, at the C-terminus of SopA. Molecular dynamics simulations indicate that the predicted amphipathic helical motif of SopA has weak affinity for membranes. Moreover, we experimentally show that SopA can associate with bacterial membranes, is detectable in the membrane fractions of bacterial lysates, and is sensitive to the membrane potential. Further, unlike the wild-type SopA, a deletion of the C-terminal 29 amino acids results in the loss of F plasmids from bacterial cells.


Assuntos
Proteínas de Escherichia coli , Fator F , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética
16.
New Phytol ; 231(4): 1359-1364, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34028037

RESUMO

Lipid droplets (LDs) are ubiquitous and specialized organelles in eukaryotic cells. Consisting of a triacylglycerol core surrounded by a monolayer of membrane lipids, LDs are decorated with proteins and have myriad functions, from carbon/energy storage to membrane lipid remodeling and signal transduction. The biogenesis and turnover of LDs are therefore tightly coordinated with cellular metabolic needs in a fluctuating environment. Lipid droplet turnover requires remodeling of the protein coat, lipolysis, autophagy and fatty acid ß-oxidation. Several key components of these processes have been identified in Chlamydomonas (Chlamydomonas reinhardtii), including the major lipid droplet protein, a CXC-domain containing regulatory protein, the phosphatidylethanolamine-binding DTH1 (DELAYED IN TAG HYDROLYSIS1), two lipases and two enzymes involved in fatty acid ß-oxidation. Here, we review LD turnover and discuss its physiological significance in Chlamydomonas, a major model green microalga in research on algal oil.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Triglicerídeos/metabolismo
17.
J Bacteriol ; 202(9)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32041796

RESUMO

Chlamydiae lack the conserved central coordinator protein of cell division FtsZ, a tubulin-like homolog. Current evidence indicates that Chlamydia uses the actin-like homolog, MreB, to substitute for the role of FtsZ in a polarized division mechanism. Interestingly, we observed MreB as a ring at the septum in dividing cells of Chlamydia We hypothesize that MreB, to substitute for FtsZ in Chlamydia, must possess unique properties compared to canonical MreB orthologs. Sequence differences between chlamydial MreB and orthologs in other bacteria revealed that chlamydial MreB possesses an extended N-terminal region, harboring predicted amphipathicity, as well as the conserved amphipathic helix found in other bacterial MreBs. The conserved amphipathic helix-directed green fluorescent protein (GFP) to label the membrane uniformly in Escherichia coli but the extended N-terminal region did not. However, the extended N-terminal region together with the conserved amphipathic region directed GFP to restrict the membrane label to the cell poles. In Chlamydia, the extended N-terminal region was sufficient to direct GFP to the membrane, and this localization was independent of an association with endogenous MreB. Importantly, mutating the extended N-terminal region to reduce its amphipathicity resulted in the accumulation of GFP in the cytosol of the chlamydiae and not in the membrane. The N-terminal domain of MreB was not required for homotypic interactions but was necessary for interactions with cell division components RodZ and FtsK. Our data provide mechanistic support for chlamydial MreB to serve as a substitute for FtsZ by forming a ringlike structure at the site of polarized division.IMPORTANCEChlamydia trachomatis is an obligate intracellular pathogen, causing sexually transmitted diseases and trachoma. The study of chlamydial physiology is important for developing novel therapeutic strategies for these diseases. Chlamydiae divide by a unique MreB-dependent polarized cell division process. In this study, we investigated unique properties of chlamydial MreB and observed that chlamydial species harbor an extended N-terminal region possessing amphipathicity. MreB formed a ring at the septum, like FtsZ in Escherichia coli, and its localization was dependent upon the amphipathic nature of its extended N terminus. Furthermore, this region is crucial for the interaction of MreB with cell division proteins. Given these results, chlamydial MreB likely functions at the septum as a scaffold for divisome proteins to regulate cell division in this organism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Chlamydia trachomatis/metabolismo , Proteínas de Bactérias/genética , Divisão Celular , Membrana Celular/genética , Polaridade Celular , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/química , Chlamydia trachomatis/citologia , Chlamydia trachomatis/genética , Humanos , Domínios Proteicos
18.
J Cell Sci ; 131(1)2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29150488

RESUMO

Nuclear pore complexes (NPCs) are gateways through the nuclear envelope. How they form into a structure containing three rings and integrate into the nuclear envelope remains a challenging paradigm for coordinated assembly of macro-complexes. In vertebrates, the cytoplasmic and nucleoplasmic rings of NPCs are mostly formed by multiple copies of the Nup107-Nup160 complex, whereas the central, or inner ring is composed of Nup53, Nup93, Nup155 and the two paralogues Nup188 and Nup205. Inner ring assembly is only partially understood. Using in vitro nuclear assembly reactions, we show that direct pore membrane binding of Nup155 is crucial for NPC formation. Replacing full-length Nup155 with its N-terminal ß-propeller allows assembly of the outer ring components to the NPC backbone that also contains Nup53. However, further assembly, especially recruitment of the Nup93 and Nup62 complexes, is blocked. Self-interaction between the N- and C-terminal domains of Nup155 has an auto-inhibitory function that prevents interaction between the N-terminus of Nup155 and the C-terminal region of Nup53. Nup93 can overcome this block by binding to Nup53, thereby promoting formation of the inner ring and the NPC.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Sítios de Ligação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Xenopus/genética , Xenopus laevis
19.
Biochem Soc Trans ; 48(3): 837-851, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32597479

RESUMO

Lipid compositions of cells differ according to cell types and intracellular organelles. Phospholipids are major cell membrane lipids and have hydrophilic head groups and hydrophobic fatty acid tails. The cellular lipid membrane without any protein adapts to spherical shapes, and protein binding to the membrane is thought to be required for shaping the membrane for various cellular events. Until recently, modulation of cellular lipid membranes was initially shown to be mediated by proteins recognizing lipid head groups, including the negatively charged ones of phosphatidylserine and phosphoinositides. Recent studies have shown that the abilities of membrane-deforming proteins are also regulated by the composition of fatty acid tails, which cause different degrees of packing defects. The binding of proteins to cellular lipid membranes is affected by the packing defects, presumably through modulation of their interactions with hydrophobic amino acid residues. Therefore, lipid composition can be characterized by both packing defects and charge density. The lipid composition regarding fatty acid tails affects membrane bending via the proteins with amphipathic helices, including those with the ArfGAP1 lipid packing sensor (ALPS) motif and via membrane-deforming proteins with structural folding, including those with the Bin-Amphiphysin-Rvs167 (BAR) domains. This review focuses on how the fatty acid tails, in combination with the head groups of phospholipids, affect protein-mediated membrane deformation.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Animais , Membrana Celular/química , Ácidos Graxos/análise , Glicerofosfolipídeos/química , Mamíferos
20.
EMBO Rep ; 19(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29661855

RESUMO

Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.


Assuntos
GTP Fosfo-Hidrolases/fisiologia , Fusão de Membrana , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas Mitocondriais/fisiologia , Animais , Células Cultivadas , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Bicamadas Lipídicas/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA