Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 80, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243165

RESUMO

BACKGROUND: Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS: In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION: A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.


Assuntos
Anopheles , Animais , Feminino , Anopheles/genética , Anopheles/metabolismo , Hemócitos , Perfilação da Expressão Gênica , Transcriptoma , Proteínas/metabolismo
2.
BMC Genomics ; 25(1): 665, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961324

RESUMO

Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.


Assuntos
Anopheles , Resistência a Inseticidas , Piretrinas , Biologia de Sistemas , Anopheles/genética , Anopheles/efeitos dos fármacos , Animais , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Inseticidas/farmacologia , Redes Reguladoras de Genes , Organofosfatos/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Quênia , Perfilação da Expressão Gênica
3.
Malar J ; 23(1): 72, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468292

RESUMO

BACKGROUND: Recently, bacterial endosymbiont, including Wolbachia and Microsporidia were found to limit the infection of Anopheles mosquitoes with Plasmodium falciparum. This study aimed to investigate the natural presence of key transmission-blocking endosymbionts in Anopheles gambiae and Anopheles coluzzii in Southern Benin. METHODS: The present study was conducted in seven communes (Cotonou, Porto-Novo, Aguégués, Ifangni, Pobè Athiémé, and Grand-Popo) of Southern Benin. Anopheles were collected using indoor/outdoor Human Landing Catches (HLCs) and Pyrethrum Spray Catches (PSCs). Following morphological identification, PCR was used to identify An. gambiae sensu lato (s.l.) to species level and to screen for the presence of both Wolbachia and Microsporidia. Plasmodium falciparum sporozoite infection was also assessed using ELISA. RESULTS: Overall, species composition in An. gambiae s.l. was 53.7% An. coluzzii, while the remainder was An. gambiae sensu stricto (s.s.). Combined data of the two sampling techniques revealed a mean infection prevalence with Wolbachia of 5.1% (95% CI 0.90-18.6) and 1.3% (95% CI 0.07-7.8) in An. gambiae s.s. and An. coluzzii, respectively. The mean infection prevalence with Microsporidia was 41.0% (95% CI 25.9-57.8) for An. gambiae s.s. and 57.0% (95% CI 45.4-67.9) for An. coluzzii. Wolbachia was only observed in Ifangni, Pobè, and Cotonou, while Microsporidia was detected in all study communes. Aggregated data for HLCs and PSCs showed a sporozoite rate (SR) of 0.80% (95% CI 0.09-2.87) and 0.69% (95% CI 0.09-2.87) for An. gambiae and An. coluzzii, respectively, with a mean of 0.74% (95% CI 0.20-1.90). Of the four individual mosquitoes which harboured P. falciparum, none were also infected with Wolbachia and one contained Microsporidia. CONCLUSIONS: The present study is the first report of natural infections of field-collected An. gambiae s.l. populations from Benin with Wolbachia and Microsporidia. Sustained efforts should be made to widen the spectrum of bacteria identified in mosquitoes, with the potential to develop endosymbiont-based control tools; such interventions could be the game-changer in the control of malaria and arboviral disease transmission.


Assuntos
Anopheles , Malária Falciparum , Piretrinas , Wolbachia , Animais , Humanos , Benin/epidemiologia , Estudos Transversais , Mosquitos Vetores , Malária Falciparum/epidemiologia , Esporozoítos
4.
Malar J ; 23(1): 100, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589884

RESUMO

BACKGROUND: Anopheles gambiae, the major malaria mosquito in sub-Saharan Africa, feed largely indoors at night. Raising a house off the ground with no barriers underneath reduces mosquito-house entry. This experiment tested whether walling off the space under an elevated hut affects mosquito-hut entry. METHODS: Four inhabited experimental huts, each of which could be moved up and down, were used in rural Gambia. Nightly collections of mosquitoes were made using light traps and temperature and carbon dioxide levels monitored indoors and outdoors using loggers. Each night, a reference hut was kept at ground level and three huts raised 2 m above the ground; with the space under the hut left open, walled with air-permeable walls or solid walls. Treatments were rotated every four nights using a randomized block design. The experiment was conducted for 32 nights. Primary measurements were mosquito numbers and indoor temperature in each hut. RESULTS: A total of 1,259 female Anopheles gambiae sensu lato were collected in the hut at ground level, 655 in the hut with an open ground floor, 981 in the hut with air-permeable walls underneath and 873 in the hut with solid walls underneath. Multivariate analysis, adjusting for confounders, showed that a raised hut open underneath had 53% fewer mosquitoes (95% CI 47-58%), those with air-permeable walls underneath 24% fewer (95% CI 9-36%) and huts with solid walls underneath 31% fewer (95% CI 24-37%) compared with a hut on the ground. Similar results were found for Mansonia spp. and total number of female mosquitoes, but not for Culex mosquitoes where hut entry was unaffected by height or barriers. Indoor temperature and carbon dioxide levels were similar in all huts. CONCLUSION: Raising a house 2 m from the ground reduces the entry of An. gambiae and Mansonia mosquitoes, but not Culex species. The protective effect of height is reduced if the space underneath the hut is walled off.


Assuntos
Anopheles , Culex , Inseticidas , Animais , Feminino , Gâmbia , Dióxido de Carbono/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores , Inseticidas/farmacologia
5.
Malar J ; 23(1): 69, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443984

RESUMO

BACKGROUND: There are several indications that pesticides used in agriculture contribute to the emergence and spread of resistance of mosquitoes to vector control insecticides. However, the impact of such an indirect selection pressure has rarely been quantified and the molecular mechanisms involved are still poorly characterized. In this context, experimental selection with different agrochemical mixtures was conducted in Anopheles gambiae. The multi-generational impact of agrochemicals on insecticide resistance was evaluated by phenotypic and molecular approaches. METHODS: Mosquito larvae were selected for 30 generations with three different agrochemical mixtures containing (i) insecticides, (ii) non-insecticides compounds, and (iii) both insecticide and non-insecticide compounds. Every five generations, the resistance of adults to deltamethrin and bendiocarb was monitored using bioassays. The frequencies of the kdr (L995F) and ace1 (G119S) target-site mutations were monitored every 10 generations. RNAseq was performed on all lines at generation 30 in order to identify gene transcription level variations and polymorphisms associated with each selection regime. RESULTS: Larval selection with agrochemical mixtures did not affect bendiocarb resistance and did not select for ace1 mutation. Contrastingly, an increased deltamethrin resistance was observed in the three selected lines. Such increased resistance was not majorly associated with the presence of kdr L995F mutation in selected lines. RNA-seq identified 63 candidate resistance genes over-transcribed in at least one selected line. These include genes coding for detoxification enzymes or cuticular proteins previously associated with insecticide resistance, and other genes potentially associated with chemical stress response. Combining an allele frequency filtering with a Bayesian FST-based genome scan allowed to identify genes under selection across multiple genomic loci, supporting a multigenic adaptive response to agrochemical mixtures. CONCLUSION: This study supports the role of agrochemical contaminants as a significant larval selection pressure favouring insecticide resistance in malaria vectors. Such selection pressures likely impact kdr mutations and detoxification enzymes, but also more generalist mechanisms such as cuticle resistance, which could potentially lead to cross-tolerance to unrelated insecticide compounds. Such indirect effect of global landscape pollution on mosquito resistance to public health insecticides deserves further attention since it can affect the nature and dynamics of resistance alleles circulating in malaria vectors and impact the efficacy of control vector strategies.


Assuntos
Anopheles , Poluentes Ambientais , Inseticidas , Malária , Nitrilas , Fenilcarbamatos , Piretrinas , Animais , Anopheles/genética , Agroquímicos , Inseticidas/farmacologia , Teorema de Bayes , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Perfilação da Expressão Gênica
6.
Malar J ; 23(1): 77, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486288

RESUMO

BACKGROUND: Pyrethroid-based indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) have been employed as key vector control measures against malaria in Namibia. However, pyrethroid resistance in Anopheles mosquitoes may compromise the efficacy of these interventions. To address this challenge, the World Health Organization (WHO) recommends the use of piperonyl butoxide (PBO) LLINs in areas where pyrethroid resistance is confirmed to be mediated by mixed function oxidase (MFO). METHODS: This study assessed the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to WHO tube bioassays with 4% DDT and 0.05% deltamethrin insecticides. Additionally, the study explored the effect of piperonyl butoxide (PBO) synergist by sequentially exposing mosquitoes to deltamethrin (0.05%) alone, PBO (4%) + deltamethrin (0.05%), and PBO alone. The Anopheles mosquitoes were further identified morphologically and molecularly. RESULTS: The findings revealed that An. gambiae sensu stricto (s.s.) (62%) was more prevalent than Anopheles arabiensis (38%). The WHO tube bioassays confirmed resistance to deltamethrin 0.05% in the Oshikoto, Kunene, and Kavango West regions, with mortality rates of 79, 86, and 67%, respectively. In contrast, An. arabiensis displayed resistance to deltamethrin 0.05% in Oshikoto (82% mortality) and reduced susceptibility in Kavango West (96% mortality). Notably, there was reduced susceptibility to DDT 4% in both An. gambiae s.s. and An. arabiensis from the Kavango West region. Subsequently, a subsample from PBO synergist assays in 2020 demonstrated a high proportion of An. arabiensis in Oshana (84.4%) and Oshikoto (73.6%), and 0.42% of Anopheles quadriannulatus in Oshana. Non-amplifiers were also present (15.2% in Oshana; 26.4% in Oshikoto). Deltamethrin resistance with less than 95% mortality, was consistently observed in An. gambiae s.l. populations across all sites in both 2020 and 2021. Following pre-exposure to the PBO synergist, susceptibility to deltamethrin was fully restored with 100.0% mortality at all sites in 2020 and 2021. CONCLUSIONS: Pyrethroid resistance has been identified in An. gambiae s.s. and An. arabiensis in the Kavango West, Kunene, and Oshikoto regions, indicating potential challenges for pyrethroid-based IRS and LLINs. Consequently, the data highlights the promise of pyrethroid-PBO LLINs in addressing resistance issues in the region.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , DDT , Namíbia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos
7.
Malar J ; 23(1): 135, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711028

RESUMO

BACKGROUND: The direct membrane feeding assay (DMFA), whereby gametocyte-infected blood is collected from human donors and from which mosquitoes feed through a membrane, is proving essential for assessing parameters influencing Plasmodium transmission potential in endemic countries. The success of DMFAs is closely tied to gametocyte density in the blood, with relatively high gametocytaemia ensuring optimal infection levels in mosquitoes. As transmission intensity declines with control efforts, the occurrence of asymptomatic individuals with low gametocyte densities, who can significantly contribute to the infectious reservoir, is increasing. This poses a limitation to studies relying on the experimental infection of large numbers of mosquitoes with natural isolates of Plasmodium. A simple, field-applicable method is presented for improving parasite infectivity by concentrating Plasmodium falciparum gametocytes. METHODS: Anopheles gambiae received one of the following 5 blood treatments through DMFA: (i) whole blood (WB) samples from naturally-infected donors; (ii) donor blood whose plasma was replaced with the same volume of Plasmodium-naive AB + serum (1:1 control); (iii) plasma replaced with a volume of malaria-naïve AB + serum equivalent to half (1:1/2), or to a quarter (1:1/4), of the initial plasma volume; and (v) donor blood whose plasma was fully removed (RBC). The experiment was repeated 4 times using 4 distinct wild parasite isolates. Seven days post-infection, a total of 1,095 midguts were examined for oocyst presence. RESULTS: Substituting plasma with reduced amounts (1:1/2 and 1:1/4) of Plasmodium-naive AB + serum led to a 31% and 17% increase of the mosquito infection rate and to a 85% and 308% increase in infection intensity compared to the 1:1 control, respectively. The full removal of plasma (RBC) reduced the infection rate by 58% and the intensity by 64% compared to the 1:1 control. Reducing serum volumes (1:1/2; 1:1/4 and RBC) had no impact on mosquito feeding rate and survival when compared to the 1:1 control. CONCLUSIONS: Concentrating gametocytic blood by replacing natural plasma by lower amount of naive serum can enhance the success of mosquito infection. In an area with low gametocyte density, this simple and practical method of parasite concentration can facilitate studies on human-to-mosquito transmission such as the evaluation of transmission-blocking interventions.


Assuntos
Anopheles , Mosquitos Vetores , Plasmodium falciparum , Plasmodium falciparum/fisiologia , Animais , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Feminino , Comportamento Alimentar
8.
Malar J ; 23(1): 148, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750468

RESUMO

BACKGROUND: Vector control using insecticides is a key prevention strategy against malaria. Unfortunately, insecticide resistance in mosquitoes threatens all progress in malaria control. In the perspective of managing this resistance, new insecticide formulations are being tested to improve the effectiveness of vector control tools. METHODS: The efficacy and residual activity of Pirikool® 300 CS was evaluated in comparison with Actellic® 300 CS in experimental huts at the Tiassalé experimental station on three substrates including cement, wood and mud. The mortality, blood-feeding inhibition, exiting behaviour and deterrency of free-flying wild mosquitoes was evaluated. Cone bioassay tests with susceptible and resistant mosquito strains were conducted in the huts to determine residual efficacy. RESULTS: A total of 20,505 mosquitoes of which 10,979 (53%) wild female Anopheles gambiae were collected for 112 nights. Residual efficacy obtained from monthly cone bioassay was higher than 80% with the susceptible, laboratory-maintained An. gambiae Kisumu strain, from the first to the tenth study period on all three types of treated substrate for both Actellic® 300CS and Pirikool® 300CS. This residual efficacy on the wild Tiassalé strain was over 80% until the 4th month of study on Pirikool® 300CS S treated substrates. Overall 24-h mortalities of wild free-flying An. gambiae sensu lato which entered in the experimental huts over the 8-months trial on Pirikool® 300CS treatment was 50.5%, 75.9% and 52.7%, respectively, on cement wall, wood wall and mud wall. The positive reference product Actellic® 300CS treatment induced mortalities of 42.0%, 51.8% and 41.8% on cement wall, wood wall and mud wall. CONCLUSION: Pirikool® 300CS has performed really well against resistant strains of An. gambiae using indoor residual spraying method in experimental huts. It could be an alternative product for indoor residual spraying in response to the vectors' resistance to insecticides.


Assuntos
Anopheles , Inseticidas , Controle de Mosquitos , Anopheles/efeitos dos fármacos , Animais , Controle de Mosquitos/métodos , Inseticidas/farmacologia , Feminino , Mosquitos Vetores/efeitos dos fármacos , Habitação , Resistência a Inseticidas , Malária/prevenção & controle
9.
Malar J ; 23(1): 161, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783348

RESUMO

BACKGROUND: Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS: Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION: Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Animais , Anopheles/fisiologia , Mosquitos Vetores/fisiologia , Malária/prevenção & controle , Malária/transmissão , África Subsaariana , Controle de Mosquitos/métodos , Feminino , Comportamento Alimentar , Masculino
10.
Malar J ; 23(1): 160, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778399

RESUMO

BACKGROUND: Anopheles mosquito resistance to insecticide remains a serious threat to malaria vector control affecting several sub-Sahara African countries, including Côte d'Ivoire, where high pyrethroid, carbamate and organophosphate resistance have been reported. Since 2017, new insecticides, namely neonicotinoids (e.g.; clothianidin) and pyrroles (e.g.; chlorfenapyr) have been pre-qualified by the World Health Organization (WHO) for use in public health to manage insecticide resistance for disease vector control. METHODS: Clothianidin and chlorfenapyr were tested against the field-collected Anopheles gambiae populations from Gagnoa, Daloa and Abengourou using the WHO standard insecticide susceptibility biossays. Anopheles gambiae larvae were collected from several larval habitats, pooled and reared to adulthood in each site in July 2020. Non-blood-fed adult female mosquitoes aged 2 to 5 days were exposed to diagnostic concentration deltamethrin, permethrin, alpha-cypermethrin, bendiocarb, and pirimiphos-methyl. Clothianidin 2% treated papers were locally made and tested using WHO tube bioassay while chlorfenapyr (100 µg/bottle) was evaluated using WHO bottle assays. Furthermore, subsamples of exposed mosquitoes were identified to species and genotyped for insecticide resistance markers including the knock-down resistance (kdr) west and east, and acetylcholinesterase (Ace-1) using molecular techniques. RESULTS: High pyrethroid resistance was recorded with diagnostic dose in Abengourou (1.1 to 3.4% mortality), in Daloa (15.5 to 33.8%) and in Gagnoa (10.3 to 41.6%). With bendiocarb, mortality rates ranged from 49.5 to 62.3%. Complete mortality (100% mortality) was recorded with clothianidin in Gagnoa, 94.9% in Daloa and 96.6% in Abengourou, while susceptibility (mortality > 98%) to chlorfenapyr 100 µg/bottle was recorded at all sites and to pirimiphos-methyl in Gagnoa and Abengourou. Kdr-west mutation was present at high frequency (0.58 to 0.73) in the three sites and Kdr-east mutation frequency was recorded at a very low frequency of 0.02 in both Abengourou and Daloa samples and absent in Gagnoa. The Ace-1 mutation was present at frequencies between 0.19 and 0.29 in these areas. Anopheles coluzzii represented 100% of mosquitoes collected in Daloa and Gagnoa, and 72% in Abengourou. CONCLUSIONS: This study showed that clothianidin and chlorfenapyr insecticides induce high mortality in the natural and pyrethroid-resistant An. gambiae populations in Côte d'Ivoire. These results could support a resistance management plan by proposing an insecticide rotation strategy for vector control interventions.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Côte d'Ivoire , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Piretrinas/farmacologia , Feminino , Neonicotinoides/farmacologia , Guanidinas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Tiazóis/farmacologia , Pirróis/farmacologia , Controle de Mosquitos , Larva/efeitos dos fármacos
11.
Malar J ; 23(1): 168, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812003

RESUMO

BACKGROUND: The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.) populations and residual malaria transmission, and complementary tools are required. Thus, this study aimed to assess the efficacy of the combined use of LLINs and Bacillus thuringiensis israelensis (Bti), in comparison with LLINs. METHODS: This study was conducted in the health district of Korhogo, northern Côte d'Ivoire, within two study arms (LLIN + Bti arm and LLIN-only arm) from March 2019 to February 2020. In the LLIN + Bti arm, Anopheles larval habitats were treated every fortnight with Bti in addition to the use of LLINs. Mosquito larvae and adults were sampled and identified morphologically to genus and species using standard methods. The members of the An. gambiae complex were determined using a polymerase chain reaction technique. Plasmodium infection in An. gambiae s.l. and malaria incidence in local people was also assessed. RESULTS: Overall, Anopheles spp. larval density was lower in the LLIN + Bti arm 0.61 [95% CI 0.41-0.81] larva/dip (l/dip) compared with the LLIN-only arm 3.97 [95% CI 3.56-4.38] l/dip (RR = 6.50; 95% CI 5.81-7.29; P < 0.001). The overall biting rate of An. gambiae s.l. was 0.59 [95% CI 0.43-0.75] biting/person/night in the LLIN + Bti arm against 2.97 [95% CI 2.02-3.93] biting/person/night in LLIN-only arm (P < 0.001). Anopheles gambiae s.l. was predominantly identified as An. gambiae sensu stricto (s.s.) (95.1%, n = 293), followed by Anopheles coluzzii (4.9%; n = 15). The human-blood index was 80.5% (n = 389) in study area. EIR was 1.36 infected bites/person/year (ib/p/y) in the LLIN + Bti arm against 47.71 ib/p/y in the LLIN-only arm. Malaria incidence dramatically declined from 291.8‰ (n = 765) to 111.4‰ (n = 292) in LLIN + Bti arm (P < 0.001). CONCLUSIONS: The combined use of LLINs with Bti significantly reduced the incidence of malaria. The LLINs and Bti duo could be a promising integrated approach for effective vector control of An. gambiae for elimination of malaria.


Assuntos
Anopheles , Bacillus thuringiensis , Mosquiteiros Tratados com Inseticida , Larva , Malária , Controle de Mosquitos , Côte d'Ivoire/epidemiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Larva/efeitos dos fármacos , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Feminino , Mosquitos Vetores/efeitos dos fármacos , Humanos , Masculino , Adolescente , Pré-Escolar , Adulto Jovem , Criança , Adulto
12.
Malar J ; 23(1): 12, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195484

RESUMO

BACKGROUND: Clothianidin, an insecticide with a novel mode of action, has been deployed in the annual indoor residual spraying programme in northern Ghana since March 2021. To inform pragmatic management strategies and guide future studies, baseline data on local Anopheles gambiae sensu lato (s.l.) susceptibility to the clothianidin insecticide were collected in Kpalsogu, a village in the Northern region, Ghana. METHODS: Phenotypic susceptibility of An. gambiae mosquitoes to clothianidin was assessed using the World Health Organization (WHO) insecticide resistance monitoring bioassay. The WHO cone bioassays were conducted on mud and cement walls sprayed with Sumishield 50 wettable granules (WG) (with clothianidin active ingredient). Daily mortalities were recorded for up to 7 days to observe for delayed mortalities. Polymerase chain reaction (PCR) technique was used to differentiate the sibling species of the An. gambiae complex and also for the detection of knock down resistance genes (kdr) and the insensitive acetylcholinesterase mutation (ace-1). RESULTS: The WHO susceptibility bioassay revealed a delayed killing effect of clothianidin. Mosquitoes exposed to the cone bioassays for 5 min died 120 h after exposure. Slightly higher mortalities were observed in mosquitoes exposed to clothianidin-treated cement wall surfaces than mosquitoes exposed to mud wall surfaces. The kdr target-site mutation L1014F occurred at very high frequencies (0.89-0.94) across all vector species identified whereas the ace-1 mutation occurred at moderate levels (0.32-0.44). Anopheles gambiae sensu stricto was the most abundant species observed at 63%, whereas Anopheles arabiensis was the least observed at 9%. CONCLUSIONS: Anopheles gambiae s.l. mosquitoes in northern Ghana were susceptible to clothianidin. They harboured kdr mutations at high frequencies. The ace-1 mutation occurred in moderation. The results of this study confirm that clothianidin is an effective active ingredient and should be utilized in malaria vector control interventions.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Inseticidas/farmacologia , Acetilcolinesterase , Gana , Mosquitos Vetores
13.
Malar J ; 23(1): 45, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347591

RESUMO

BACKGROUND: The male mosquito microbiome may be important for identifying ideal candidates for disease control. Among other criteria, mosquito-associated symbionts that have high localization in both male and female mosquitoes and are transmissible through both vertical and sexual routes are desirable. However, mosquito microbiome studies have mainly been female-focused. In this study, the microbiota of male and female Anopheles gambiae sensu lato (s.l.) were compared to identify shared or unique bacteria. METHODS: Late larval instars of Anopheles mosquitoes were collected from the field and raised to adults. Equal numbers of males and females of 1-day-old non-sugar-fed, 4-5-day-old sugar-fed and post-blood-fed females were randomly selected for whole-body analyses of bacteria 16S rRNA. RESULTS: Results revealed that male and female mosquitoes generally share similar microbiota except when females were blood-fed. Compared to newly emerged unfed mosquitoes, feeding on sugar and/or blood increased variability in microbial composition (⍺-diversity), with a higher disparity among females (39% P = 0.01) than in males (29% P = 0.03). Elizabethkingia meningoseptica and Asaia siamensis were common discriminants between feeding statuses in both males and females. While E. meningoseptica was particularly associated with sugar-fed mosquitoes of both sexes and sustained after blood feeding in females, A. siamensis was also increased in sugar-fed mosquitoes but decreased significantly in blood-fed females (LDA score > 4.0, P < 0.05). Among males, A. siamensis did not differ significantly after sugar meals. CONCLUSIONS: Results indicate the opportunities for stable infection in mosquitoes should these species be used in bacteria-mediated disease control. Further studies are recommended to investigate possible host-specific tissue tropism of bacteria species which will inform selection of the most appropriate microbes for effective transmission-blocking strategies.


Assuntos
Anopheles , Infecções por Flavobacteriaceae , Animais , Masculino , Feminino , Anopheles/genética , RNA Ribossômico 16S/genética , Carboidratos , Bactérias , Açúcares , Comportamento Alimentar
14.
BMC Infect Dis ; 24(1): 545, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816702

RESUMO

BACKGROUND: This study aimed to investigate the relationship between the physicochemical characteristics of An. gambiae s.s. and An. coluzzii breeding sites, the susceptibility profiles to commonly used insecticides in public health, and the underlying insecticide resistance mechanisms. METHODS: Anopheles breeding sites surveys were conducted in Cotonou and Natitingou in September 2020, January and August 2021. Physicochemical properties and bacterial loads were determined in individual breeding sites. The WHO susceptibility assays were carried out using the female of the emerging adult mosquitoes. Anopheles species were identified through PCR techniques. Kdr L1014F/S, N1575Y and G119S mutations were investigated using TaqMan genotyping assays. RESULTS: Molecular analysis showed that all mosquitoes analyzed in Cotonou were Anopheles coluzzii, while those of Natitingou were Anopheles gambiae s.s. Fecal coliforms were identified as playing a role in this distribution through their significant influence on the presence of An. coluzzii larvae. WHO susceptibility assay indicated a high level of resistance to deltamethrin in the two cities. The resistance levels to deltamethrin were higher in Cotonou (X2 = 31.689; DF = 1; P < 0.0001). There was a suspected resistance to bendiocarb in Cotonou, whereas the mosquito population in Natitingou was resistant. The kdr L1014F mutation was highly observed in both mosquito populations (frequence: 86-91%), while the Ace-1 mutation was found in a small proportion of mosquitoes. In Cotonou, salinity was the only recorded physicochemical parameter that significantly correlated with the resistance of Anopheles mosquitoes to deltamethrin (P < 0.05). In Natitingou, significant correlations were observed between the allelic frequencies of the kdr L1014F mutation and pH, conductivity, and TDS. CONCLUSION: These results indicate a high level of pyrethroid resistance in the anopheles populations of both Cotonou and Natitingou. Moreover, this study report the involvement of abiotic factors influencing Anopheles susceptibility profile.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Mutação , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Benin , Inseticidas/farmacologia , Feminino , Piretrinas/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Larva/efeitos dos fármacos , Cruzamento , Cidades , Fenilcarbamatos
15.
Med Vet Entomol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39282938

RESUMO

Pyrethroid resistance and mechanisms for resistance for Anopheles gambiae sensus lato (s.l.) (Diptera: Culicidae) Giles, were assessed in three urban areas (vegetable farming, industrial and residential) of Abidjan. Susceptibility to pyrethroids (deltamethrin, permethrin and alphacypermethrin), with and without piperonyl butoxide (PBO) pre-exposure was evaluated. Anopheles gambiae complex members were identified using Short Interspersed Nuclear Elements PCR (SINE PCR), and resistance mechanisms (kdr-west, kdr-east and ace-1) and metabolic gene expression (CYP6P5, CYP6M2, CYP6P3, CYP6P4) were determined by real-time polymerase chain reaction (PCR). High resistance to deltamethrin, permethrin and alphacypermethrin was observed in Port-Bouet (vegetable farming) and Treichville (industrial site), whereas moderate resistance to deltamethrin and high resistance to alphacypermethrin and permethrin were found in Abobo (residential site). Pre-exposure to PBO with pyrethroid increased mortalities in all sites. In Treichville, pre-exposure to PBO restored susceptibility to deltamethrin, but not in Port-Bouet or Abobo. In Treichville, An. gambiae Giles sensu stricto (s.s.) was predominant (92.9%), whereas in Abobo and Port-Bouet, An. coluzzii Giles was predominant (73.6% and 66.4%, respectively). The highest kdr-west mutation frequency was in An. gambiae s.s. (42.8%) from Abobo, followed by An. gambiae s.s. (40%) from Port-Bouet and An. gambiae s.s. (35.6%) from Treichville. In An. coluzzii, the highest kdr-west mutation frequency was in Port-Bouet (48.2%), followed by Abobo (28.00%) and Treichville (21.4%). Mutation frequencies of kdr-east were lower in An. gambiae s.s. from Treichville (4.1%) and Port-Bouet (2.1%) and absent in An. gambiae from Abobo. In industrial and vegetable farming areas, CYP6P3 and CYP6M2 were overexpressed compared with Kisumu. The study suggests An. gambiae s.l. distribution and pyrethroid resistance are influenced by human activities. Treichville's industrial area favoured An. gambiae s.s., whereas Abobo's residential and Port-Bouet's vegetable farming areas were dominated by An. coluzzii. Resistance in Treichville and Port-Bouet was associated with kdr (west and east) genes and metabolic genes, whereas in residential areas, only kdr-west genes were observed. These data suggest that PBO + deltamethrin impregnated nets could aid malaria control, benefiting industrial areas of Côte d'Ivoire and other African cities.

16.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893531

RESUMO

In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 µg/cm2. In time-span bioassays performed at 333 µg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-ß-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents.


Assuntos
Aedes , Repelentes de Insetos , Óleos Voláteis , Oviposição , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Oviposição/efeitos dos fármacos , Aedes/efeitos dos fármacos , Culex/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Culicidae/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Lantana/química , Anacardiaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Feminino
17.
Malar J ; 22(1): 24, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670482

RESUMO

BACKGROUND: The objective of this study was to estimate malaria transmission and insecticide resistance status in malaria vectors in Adjrako village from Zè District in Southern Benin. The present study was carried out prior to investigations on infectivity of blood from asymptomatic carriers of Plasmodium falciparum to malaria vector mosquitoes. METHODS: Human landing collections (HLCs) were performed in Adjrako village during the rainy season (September-November 2021). In this village, host-seeking mosquitoes were collected during three nights per survey from 22:00 to 06:00 in six randomly selected houses. Malaria vectors were dissected in orders to determinate their parity. Plasmodium falciparum infection in malaria vectors was determined by qPCR and the entomological inoculation rate (EIR) was calculated. The World Health Organization (WHO) insecticide susceptibility test-kits were used to evaluate the susceptibility of Anopheles gambiae sensu lato (s.l.) to deltamethrin at 0.05% and bendiocarb at 0.1%. RESULTS: A total of 3260 females of mosquitoes belonging to 4 genera (Anopheles, Culex, Aedes and Mansonia) were collected. Most of the mosquitoes collected were An. gambiae sensu lato (s.l.). The entomological inoculation rate (EIR) for the three collection months was 8.7 infective bites per person and the parity rate was 84%. Mortality rates of An. gambiae s.l. exposed to 0.05% deltamethrin and 0.1% bendiocarb were 18% and 96%, respectively, indicating that this vector population was resistant to deltamethrin and possibly resistant to bendiocarb in the study area. CONCLUSION: This study showed that malaria transmission is effective in the study area and that An. gambiae s.l. is the main malaria vector. The entomological parameters indicate this study area is potentially favourable for investigations on P. falciparum asymptomatic carriers.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Feminino , Humanos , Plasmodium falciparum/genética , Benin/epidemiologia , Mosquitos Vetores , Malária Falciparum/epidemiologia , Resistência a Inseticidas
18.
Malar J ; 22(1): 291, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777725

RESUMO

BACKGROUND: Ivermectin (IVM) mass drug administration is a candidate complementary malaria vector control tool. Ingestion of blood from IVM treated hosts results in reduced survival in mosquitoes. Estimating bio-efficacy of IVM on wild-caught mosquitoes requires they ingest the drug in a blood meal either through a membrane or direct feeding on a treated host. The latter, has ethical implications, and the former results in low feeding rates. Therefore, there is a need to develop a safe and effective method for IVM bio-efficacy monitoring in wild mosquitoes. METHODS: Insectary-reared Anopheles gambiae s.s. were exposed to four IVM doses: 85, 64, 43, 21 ng/ml, and control group (0 ng/ml) in three different solutions: (i) blood, (ii) 10% glucose, (iii) four ratios (1:1, 1:2, 1:4, 1:8) of blood in 10% glucose, and fed through filter paper. Wild-caught An. gambiae s.l. were exposed to 85, 43 and 21 ng/ml IVM in blood and 1:4 ratio of blood-10% glucose mixture. Survival was monitored for 28 days and a pool of mosquitoes from each cohort sacrificed immediately after feeding and weighed to determine mean weight of each meal type. RESULTS: When administered in glucose solution, mosquitocidal effect of IVM was not comparable to the observed effects when similar concentrations were administered in blood. Equal concentrations of IVM administered in blood resulted in pronounced reductions in mosquito survival compared to glucose solution only. However, by adding small amounts of blood to glucose solution, mosquito mortality rates increased resulting in similar effects to what was observed during blood feeding. CONCLUSION: Bio-efficacy of ivermectin is strongly dependent on mode of drug delivery to the mosquito and likely influenced by digestive processes. The assay developed in this study is a good candidate for field-based bio-efficacy monitoring: wild mosquitoes readily feed on the solution, the assay can be standardized using pre-selected concentrations and by not involving treated blood hosts (human or animal) variation in individual pharmacokinetic profiles as well as ethical issues are bypassed. Meal volumes did not explain the difference in the lethality of IVM across the different meal types necessitating further research on the underlying mechanisms.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Ivermectina/farmacologia , Inseticidas/farmacologia , Mosquitos Vetores , Glucose/farmacologia , Controle de Mosquitos
19.
Malar J ; 22(1): 327, 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37899457

RESUMO

BACKGROUND: Over a decade of vector control by indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) distribution on the mainland, and only LLINs on islands had a minimal impact on disease burden in Nchelenge district, northern Zambia. Anopheles funestus and Anopheles gambiae are vectors known only from the mainland. Understanding vector bionomics in the district is necessary for planning and targeting effective vector control. This study aimed to provide information on abundance, seasonality, and Plasmodium falciparum sporozoite infectivity of malaria vectors in Nchelenge, including islands. METHODS: Mosquitoes were collected in 192 CDC indoor light traps set in 56 households between January 2015 and January 2016. Morphological and molecular species identifications and P. falciparum circumsporoites by ELISA were performed. Mosquito counts and relative abundances from the islands and mainland were compared, and household factors associated with vector counts were determined. RESULTS: A total of 5888 anophelines were collected during the study. Of these, 5,704 were female Anopheles funestus sensu lato (s.l.) and 248 female An. gambiae s.l. The highest proportion of An. funestus (n = 4090) was from Chisenga Island and An. gambiae (n = 174) was from Kilwa Island. The highest estimated counts per trap for An. funestus s.l. were from Chisenga island, (89.9, p < 0.001) and from the dry season (78.6, p < 001). For An. gambiae the highest counts per trap were from Kilwa island (3.1, p < 0.001) and the rainy season (2.5, p = 0.007). The highest estimated annual entomological inoculation rate was from Chisenga Island with 91.62 ib/p/y followed by Kilwa Island with 29.77 ib/p/yr, and then Mainland with 19.97 ib/p/yr. CONCLUSIONS: There was varied species abundance and malaria transmission risk across sites and seasons. The risk of malaria transmission was perennial and higher on the islands. The minimal impact of vector control efforts on the mainland was evident, but limited overall. Vector control intervention coverage with effective tools needs to be extended to the islands to effectively control malaria transmission in Nchelenge district.


Assuntos
Anopheles , Inseticidas , Malária Falciparum , Malária , Animais , Feminino , Masculino , Zâmbia/epidemiologia , Lagos , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Controle de Mosquitos
20.
Malar J ; 22(1): 93, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915098

RESUMO

BACKGROUND: Knowing the species composition and insecticide resistance status of the target vector population is important to guide malaria vector control. The aim of this study was to characterize the malaria vector population in terms of species composition, insecticide susceptibility status and potential underlying resistance mechanisms in Ellibou, southern Côte d'Ivoire. METHODS: A 1-year longitudinal entomological survey was conducted using light traps and pyrethroid spray catches to sample adult mosquitoes in combination with larval sampling. The susceptibility status of Anopheles gambiae sensu lato (s.l.) to bendiocarb, deltamethrin, DDT and malathion was assessed using the World Health Organization insecticide susceptibility test. Additionally, An. gambiae specimens were screened for knockdown (kdr) and acetylcholineesterase (ace1) target site resistance alleles, and the expression levels of eight metabolic resistance genes, including seven cytochrome P450 monooxygenases (P450s) and one glutathione S-transferase (GST), measured with reverse transcription quantitative real-time polymerase chain reaction (qPCR). RESULTS: Overall, 2383 adult mosquitoes from 12 different taxa were collected with Culex quinquefasciatus and An. gambiae being the predominant taxa. Molecular identification of An. gambiae s.l. revealed the presence of Anopheles arabiensis, Anopheles coluzzii, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii/An. gambiae s.s. hybrids. Anopheles gambiae mosquitoes were resistant to all insecticides except malathion. PCR diagnostics revealed the presence of ace1-G280S and the kdr L995F, L995S and N1570Y target-site mutations. Additionally, several genes were upregulated, including five P450s (i.e., CYP6P3, CYP6M2, CYP9K1, CYP6Z1, CYP6P1) and GSTE2. CONCLUSION: This is the first documented presence of An. arabiensis in Côte d'Ivoire. Its detection - together with a recent finding further north of the country - confirms its existence in the country, which is an early warning sign, as An. arabiensis shows a different biology than the currently documented malaria vectors. Because the local An. gambiae population was still susceptible to malathion, upregulation of P450s, conferring insecticide resistance to pyrethroids, together with the presence of ace1, suggest negative cross-resistance. Therefore, organophosphates could be an alternative insecticide class for indoor residual spraying in the Ellibou area, while additional tools against the outdoor biting An. arabiensis will have to be considered.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Anopheles/genética , Malation/farmacologia , Côte d'Ivoire , Mosquitos Vetores/genética , Malária/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA