Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.963
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(5): 1327-1342, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319946

RESUMO

Anthocyanin generation in apples (Malus domestica) and the pigmentation that results from it may be caused by irradiation and through administration of methyl jasmonate (MeJA). However, their regulatory interrelationships associated with fruit coloration are not well defined. To determine whether MdERF109, a transcription factor (TF) involved in light-mediated coloration and anthocyanin biosynthesis, has synergistic effects with other proteins, we performed a yeast two-hybrid assessment and identified another TF, MdWER. MdWER was induced by MeJA treatment, and although overexpression of MdWER alone did not promote anthocyanin accumulation co-overexpression with MdERF109 resulted in significantly increase in anthocyanin biosynthesis. MdWER may form a protein complex with MdERF109 to promote anthocyanin accumulation by enhancing combinations between the proteins and their corresponding genes. In addition, MdWER, as a MeJA responsive protein, interacts with the anthocyanin repressor MdJAZ2. Transient co-expression in apple fruit and protein interaction assays allowed us to conclude that MdERF109 and MdJAZ2 interact with MdWER and take part in the production of anthocyanins upon MeJA treatment and irradiation. Our findings validate a role for the MdERF109-MdWER-MdJAZ2 module in anthocyanin biosynthesis and uncover a novel mechanism for how light and MeJA signals are coordinated anthocyanin biosynthesis in apple fruit.


Assuntos
Acetatos , Antocianinas , Ciclopentanos , Frutas , Regulação da Expressão Gênica de Plantas , Luz , Malus , Oxilipinas , Proteínas de Plantas , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Antocianinas/metabolismo , Antocianinas/biossíntese , Acetatos/farmacologia , Acetatos/metabolismo , Malus/metabolismo , Malus/genética , Malus/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/metabolismo , Frutas/genética , Frutas/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Reguladores de Crescimento de Plantas/metabolismo
2.
Plant J ; 117(4): 1069-1083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947285

RESUMO

The color of purple carrot taproots mainly depends on the anthocyanins sequestered in the vacuoles. Glutathione S-transferases (GSTs) are key enzymes involved in anthocyanin transport. However, the precise mechanism of anthocyanin transport from the cytosolic surface of the endoplasmic reticulum (ER) to the vacuoles in carrots remains unclear. In this study, we conducted a comprehensive analysis of the carrot genome, leading to the identification of a total of 41 DcGST genes. Among these, DcGST1 emerged as a prominent candidate, displaying a strong positive correlation with anthocyanin pigmentation in carrot taproots. It was highly expressed in the purple taproot tissues of purple carrot cultivars, while it was virtually inactive in the non-purple taproot tissues of purple and non-purple carrot cultivars. DcGST1, a homolog of Arabidopsis thaliana TRANSPARENT TESTA 19 (TT19), belongs to the GSTF clade and plays a crucial role in anthocyanin transport. Using the CRISPR/Cas9 system, we successfully knocked out DcGST1 in the solid purple carrot cultivar 'Deep Purple' ('DPP'), resulting in carrots with orange taproots. Additionally, DcMYB7, an anthocyanin activator, binds to the DcGST1 promoter, activating its expression. Compared with the expression DcMYB7 alone, co-expression of DcGST1 and DcMYB7 significantly increased anthocyanin accumulation in carrot calli. However, overexpression of DcGST1 in the two purple carrot cultivars did not change the anthocyanin accumulation pattern or significantly increase the anthocyanin content. These findings improve our understanding of anthocyanin transport mechanisms in plants, providing a molecular foundation for improving and enhancing carrot germplasm.


Assuntos
Antocianinas , Daucus carota , Antocianinas/metabolismo , Daucus carota/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética
3.
Plant J ; 119(3): 1433-1448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922743

RESUMO

Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regiões Promotoras Genéticas , Retroelementos , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Retroelementos/genética , Etilenos/metabolismo , Etilenos/biossíntese , Temperatura Baixa , Citrus/genética , Citrus/metabolismo
4.
Plant J ; 118(5): 1569-1588, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412288

RESUMO

Apple rust is a serious fungal disease affecting Malus plants worldwide. Infection with the rust pathogen Gymnosporangium yamadae induces the accumulation of anthocyanins in Malus to resist rust disease. However, the mechanism of anthocyanin biosynthesis regulation in Malus against apple rust is still unclear. Here, we show that MpERF105 and MpNAC72 are key regulators of anthocyanin biosynthesis via the ethylene-dependent pathway in M. 'Profusion' leaves under rust disease stress. Exogenous ethephon treatment promoted high expression of MpERF105 and MpNAC72 and anthocyanin accumulation in G. yamadae-infected M. 'Profusion' leaves. Overexpression of MpERF105 increased the total anthocyanin content of Malus plant material and acted by positively regulating its target gene, MpMYB10b. MpNAC72 physically interacted with MpERF105 in vitro and in planta, and the two form a protein complex. Coexpression of the two leads to higher transcript levels of MpMYB10b and higher anthocyanin accumulation. In addition, overexpression of MpERF105 or MpNAC72 enhanced the resistance of M. 'Profusion' leaves to apple rust. In conclusion, our results elucidate the mechanism by which MpERF105 and MpNAC72 are induced by ethylene in G. yamadae-infected M. 'Profusion' leaves and promote anthocyanin accumulation by mediating the positive regulation of MpMYB10b expression.


Assuntos
Antocianinas , Basidiomycota , Regulação da Expressão Gênica de Plantas , Malus , Doenças das Plantas , Folhas de Planta , Proteínas de Plantas , Antocianinas/metabolismo , Antocianinas/biossíntese , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/microbiologia , Malus/genética , Malus/metabolismo , Basidiomycota/fisiologia , Etilenos/metabolismo
5.
Plant J ; 119(4): 1859-1879, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923625

RESUMO

In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.


Assuntos
Antocianinas , Ascomicetos , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Doenças das Plantas , Proteínas de Plantas , Ácido Salicílico , Malus/microbiologia , Malus/genética , Malus/metabolismo , Ácido Salicílico/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/microbiologia , Frutas/metabolismo , Frutas/genética , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
6.
Plant J ; 119(4): 1816-1829, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899540

RESUMO

Purple carrot accumulates anthocyanins modified with galactose, xylose, glucose, and sinapic acid. Most of the genes associated with anthocyanin biosynthesis have been identified, except for the glucosyltransferase genes involved in the step before the acylation in purple carrot. Anthocyanins are commonly glycosylated in reactions catalyzed by UDP-sugar-dependent glycosyltransferases (UGTs). Although many studies have been conducted on UGTs, the glucosylation of carrot anthocyanins remains unknown. Acyl-glucose-dependent glucosyltransferase activity modifying cyanidin 3-xylosylgalactoside was detected in the crude protein extract prepared from purple carrot cultured cells. In addition, the corresponding enzyme was purified. The cDNA encoding this glucosyltransferase was isolated based on the partial amino acid sequence of the purified protein. The recombinant protein produced in Nicotiana benthamiana leaves via agroinfiltration exhibited anthocyanin glucosyltransferase activity. This glucosyltransferase belongs to the glycoside hydrolase family 3 (GH3). The expression pattern of the gene encoding this GH3-type anthocyanin glucosyltransferase was consistent with anthocyanin accumulation in carrot tissues and cultured cells.


Assuntos
Antocianinas , Daucus carota , Proteínas de Plantas , Daucus carota/genética , Daucus carota/metabolismo , Daucus carota/enzimologia , Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/enzimologia , Glicosilação , Regulação da Expressão Gênica de Plantas , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sequência de Aminoácidos
7.
Plant J ; 119(4): 1737-1750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865101

RESUMO

Anthocyanin is an important pigment responsible for plant coloration and beneficial to human health. Kale (Brassica oleracea var. acephala), a primary cool-season flowers and vegetables, is an ideal material to study anthocyanin biosynthesis and regulation mechanisms due to its anthocyanin-rich leaves. However, the underlying molecular mechanism of anthocyanin accumulation in kale remains poorly understood. Previously, we demonstrated that BoDFR1 is a key gene controlling anthocyanin biosynthesis in kale. Here, we discovered a 369-bp InDel variation in the BoDFR1 promoter between the two kale inbred lines with different pink coloration, which resulted in reduced transcriptional activity of the BoDFR1 gene in the light-pink line. With the 369-bp insertion as a bait, an R2R3-MYB repressor BoMYB4b was identified using the yeast one-hybrid screening. Knockdown of the BoMYB4b gene led to increased BoDFR1 expression and anthocyanin accumulation. An E3 ubiquitin ligase, BoMIEL1, was found to mediate the degradation of BoMYB4b, thereby promoting anthocyanin biosynthesis. Furthermore, the expression level of BoMYB4b was significantly reduced by light signals, which was attributed to the direct repression of the light-signaling factor BoMYB1R1 on the BoMYB4b promoter. Our study revealed that a novel regulatory module comprising BoMYB1R1, BoMIEL1, BoMYB4b, and BoDFR1 finely regulates anthocyanin accumulation in kale. The findings aim to establish a scientific foundation for genetic improvement of leaf color traits in kale, meanwhile, providing a reference for plant coloration studies.


Assuntos
Antocianinas , Brassica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica/genética , Brassica/metabolismo , Regiões Promotoras Genéticas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38232726

RESUMO

Adaptive radiations are characterized by rapid ecological diversification and speciation events, leading to fuzzy species boundaries between ecologically differentiated species. Adaptive radiations are therefore key systems for understanding how species are formed and maintained, including the role of de novo mutations versus preexisting variation in ecological adaptation and the genome-wide consequences of hybridization events. For example, adaptive introgression, where beneficial alleles are transferred between lineages through hybridization, may fuel diversification in adaptive radiations and facilitate adaptation to new environments. In this study, we employed whole-genome resequencing data to investigate the evolutionary origin of hummingbird-pollinated flowers and to characterize genome-wide patterns of phylogenetic discordance and introgression in Penstemon subgenus Dasanthera, a small and diverse adaptive radiation of plants. We found that magenta hummingbird-adapted flowers have apparently evolved twice from ancestral blue-violet bee-pollinated flowers within this radiation. These shifts in flower color are accompanied by a variety of inactivating mutations to a key anthocyanin pathway enzyme, suggesting that independent de novo loss-of-function mutations underlie the parallel evolution of this trait. Although patterns of introgression and phylogenetic discordance were heterogenous across the genome, a strong effect of gene density suggests that, in general, natural selection opposes introgression and maintains genetic differentiation in gene-rich genomic regions. Our results highlight the importance of both de novo mutation and introgression as sources of evolutionary change and indicate a role for de novo mutation in driving parallel evolution in adaptive radiations.


Assuntos
Flores , Genoma , Animais , Abelhas , Filogenia , Flores/genética , Aves , Mutação , Evolução Biológica
9.
Plant Physiol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140769

RESUMO

Blotches in floral organs attract pollinators and promote pollination success. Tree peony (Paeonia suffruticosa Andr.) is an internationally renowned cut flower with extremely high ornamental and economic value. Blotch formation on P. suffruticosa petals is predominantly attributed to anthocyanin accumulation. However, the endogenous regulation of blotch formation in P. suffruticosa remains elusive. Here, we identified the regulatory modules governing anthocyanin-mediated blotch formation in P. suffruticosa petals, which involves the transcription factors PsMYB308, PsMYBPA2, and PsMYB21. PsMYBPA2 activated PsF3H expression to provide sufficient precursor substrate for anthocyanin biosynthesis. PsMYB21 activated both PsF3H and PsFLS expression and promoted flavonol biosynthesis. The significantly high expression of PsMYB21 in non-blotch regions inhibited blotch formation by competing for anthocyanin biosynthesis substrates, while conversely, its low expression in the blotch region promoted blotch formation. PsMYB308 inhibited PsDFR and PsMYBPA2 expression to directly prevent anthocyanin-mediated blotch formation. Notably, a smaller blotch area, decreased anthocyanin content, and inhibition of anthocyanin structural gene expression were observed in PsMYBPA2-silenced petals, while the opposite phenotypes were observed in PsMYB308-silenced and PsMYB21-silenced petals. Additionally, PsMYBPA2 and PsMYB308 interacted with PsbHLH1-3, and their regulatory intensity on target genes was synergistically regulated by the PsMYBPA2-PsbHLH1-3 and PsMYB308-PsbHLH1-3 complexes. PsMYB308 also competitively bound to PsbHLH1-3 with PsMYBPA2 to fine-tune the regulatory network to prevent overaccumulation of anthocyanin in blotch regions. Overall, our study uncovers a complex R2R3-MYB transcriptional regulatory network that governs anthocyanin-mediated blotch formation in P. suffruticosa petals, providing insights into the molecular mechanisms underlying blotch formation in P. suffruticosa.

10.
Plant J ; 114(4): 951-964, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36919360

RESUMO

Red coloration around the stone (Cs) is an important trait of canned peaches (Prunus persica). In this study, an elongated hypocotyl 5 gene in peach termed PpHY5 was identified to participate in the regulation of the Cs trait. The E3 ubiquitin ligase PpCOP1 was expressed in the flesh around the stone and could interact with PpHY5. Although HY5 is known to be degraded by COP1 in darkness, the PpHY5 gene was activated in the flesh tissue surrounding the stone at the ripening stages and its expression was consistent with anthocyanin accumulation. PpHY5 was able to promote the transcription of PpMYB10.1 through interacting with its partner PpBBX10. Silencing of PpHY5 in the flesh around the stone caused a reduction in anthocyanin pigmentation, while transient overexpression of PpHY5 and PpBBX10 resulted in anthocyanin accumulation in peach fruits. Moreover, transgenic Arabidopsis seedlings overexpressing PpHY5 showed increased anthocyanin accumulation in leaves. Our results improve our understanding of the mechanisms of anthocyanin coloration in plants.


Assuntos
Arabidopsis , Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Frutas/genética , Frutas/metabolismo
11.
Plant J ; 113(1): 47-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377282

RESUMO

Blue aleurone of barley is caused by the accumulation of delphinidin-based derivatives. Although these compounds are ideal nutrients for human health, they are undesirable contaminants in malt brewing. Therefore, the ability to add and remove this trait easily would facilitate breeding barley for different purposes. Here we identified a glutathione S-transferase gene (HvGST) that was responsible for the blue aleurone trait in Tibetan qingke barley by performing a genome-wide association study and RNA-sequencing analysis. Gene variation and expression analysis indicated that HvGST also participates in the transport and accumulation of anthocyanin in purple barley. Haplotype and the geographic distribution analyses of HvGST alleles revealed two independent natural variants responsible for the emergence of white aleurone: a 203-bp deletion causing premature termination of translation in qingke barley and two key single nucleotide polymorphisms in the promoter resulting in low transcription in Western barley. This study contributes to a better understanding of mechanisms of colored barley formation, and provides a comprehensive reference for marker-assisted barley breeding.


Assuntos
Antocianinas , Hordeum , Antocianinas/metabolismo , Estudo de Associação Genômica Ampla , Haplótipos , Hordeum/genética , Hordeum/metabolismo , Melhoramento Vegetal
12.
Plant J ; 115(1): 205-219, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36999610

RESUMO

Low temperature and abscisic acid (ABA) are the two main factors that induce anthocyanin synthesis; however, their potential relationships in governing anthocyanin biosynthesis in Solanum lycopersicum (tomato) seedlings remains unclear. Our study revealed the involvement of the transcription factor SlAREB1 in the low-temperature response of tomato seedlings via the ABA-dependent pathway, for a specific temperature range. The overexpression of SlAREB1 enhanced the expression of anthocyanin-related genes and the accumulation of anthocyanins, especially under low-temperature conditions, whereas silencing SlAREB1 dramatically reduced gene expression and anthocyanin accumulation. There is a direct interaction between SlAREB1 and the promoters of SlDFR and SlF3'5'H, which are structural genes that impact anthocyanin biosynthesis. SlAREB1 can regulate anthocyanins through controlling SlDFR and SlF3'5'H expression. Accordingly, SlAREB1 takes charge of regulating anthocyanin biosynthesis in tomato seedlings via the ABA-dependent pathway at low temperatures.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Antocianinas , Temperatura , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant J ; 115(5): 1193-1213, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37219821

RESUMO

Plants have evolved an extensive specialized secondary metabolism. The colorful flavonoid anthocyanins, for example, not only stimulate flower pollination and seed dispersal, but also protect different tissues against high light, UV and oxidative stress. Their biosynthesis is highly regulated by environmental and developmental cues and induced by high sucrose levels. Expression of the biosynthetic enzymes involved is controlled by a transcriptional MBW complex, comprising (R2R3) MYB- and bHLH-type transcription factors and the WD40 repeat protein TTG1. Anthocyanin biosynthesis is not only useful, but also carbon- and energy-intensive and non-vital. Consistently, the SnRK1 protein kinase, a metabolic sensor activated in carbon- and energy-depleting stress conditions, represses anthocyanin biosynthesis. Here we show that Arabidopsis SnRK1 represses MBW complex activity both at the transcriptional and post-translational level. In addition to repressing expression of the key transcription factor MYB75/PAP1, SnRK1 activity triggers MBW complex dissociation, associated with loss of target promoter binding, MYB75 protein degradation and nuclear export of TTG1. We also provide evidence for direct interaction with and phosphorylation of multiple MBW complex proteins. These results indicate that repression of expensive anthocyanin biosynthesis is an important strategy to save energy and redirect carbon flow to more essential processes for survival in metabolic stress conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
14.
Plant J ; 113(5): 1062-1079, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606413

RESUMO

Sugar and anthocyanin are important indicators of fruit quality, and understanding the mechanism underlying their accumulation is essential for breeding high-quality fruit. We identified an R2R3-MYB transcription factor MdMYB305 in the red-fleshed apple progeny, which was positively correlated with fruit sugar content but negatively correlated with anthocyanin content. Transient injection, stable expression [overexpressing and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)], and heterologous transformation of tomato confirmed that MdMYB305 promotes the accumulation of sugar and inhibits the synthesis of anthocyanin. A series of molecular experiments (such as electrophoretic mobility shift and luciferase assays) confirmed that MdMYB305 combines with sugar-related genes (MdCWI1/MdVGT3/MdTMT2) and anthocyanin-related genes (MdF3H/MdDFR/MdUFGT), promoting and inhibiting their activities, and finally regulating the sugar and anthocyanin content of fruits. In addition, the study also found that MdMYB305 competes with MdMYB10 for the MdbHLH33 binding site to balance sugar and anthocyanin accumulation in the fruits, which provides a reference value for exploring more functions of the MYB-bHLH-MYB complex and the balance relationship between sugar and anthocyanin in the future.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Açúcares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal
15.
Plant J ; 114(3): 683-698, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840368

RESUMO

In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.


Assuntos
Fragaria , Proantocianidinas , Antocianinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Proantocianidinas/metabolismo , Flavonóis/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismo
16.
Plant J ; 115(4): 1051-1070, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162381

RESUMO

Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.


Assuntos
Arabidopsis , Camellia sinensis , Catequina , Antocianinas , Camellia sinensis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá , Regulação da Expressão Gênica de Plantas
17.
Plant J ; 115(1): 236-252, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37006197

RESUMO

Cold is one of the main abiotic stresses in temperate fruit crops, affecting the yield and fruit quality of apple in China and European countries. The plant receptor-like kinase FERONIA is widely reported to be involved in abiotic stresses. However, its function in apple cold resistance remains unknown. Modification of cell wall components and accumulation of soluble sugars and amino acids are important strategies by which plants cope with cold. In this study, expression of the apple FERONIA receptor-like kinase gene MdMRLK2 was rapidly induced by cold. Apple plants overexpressing MdMRLK2 (35S:MdMRLK2) showed enhanced cold resistance relative to the wild type. Under cold conditions, 35S:MdMRLK2 apple plants had higher amounts of water insoluble pectin, lignin, cellulose, and hemicellulose, which may have resulted from reduced activities of polygalacturonase, pectinate lyase, pectinesterase, and cellulase. More soluble sugars and free amino acids and less photosystem damage were also observed in 35S:MdMRLK2 apple plants. Intriguingly, MdMRLK2 interacted with the transcription factor MdMYBPA1 and promoted its binding to MdANS and MdUFGT promoters, leading to more anthocyanin biosynthesis, particularly under cold conditions. These findings complemented the function of apple FERONIA MdMRLK2 responding to cold resistance.


Assuntos
Malus , Malus/metabolismo , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , China , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
18.
BMC Genomics ; 25(1): 624, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902601

RESUMO

Radish exhibits significant variation in color, particularly in sprouts, leaves, petals, fleshy roots, and other tissues, displaying a range of hues such as green, white, red, purple, and black. Although extensive research has been conducted on the color variation of radish, the underlying mechanism behind the variation in radish flower color remains unclear. To date, there is a lack of comprehensive research investigating the variation mechanism of radish sprouts, leaves, fleshy roots, and flower organs. This study aims to address this gap by utilizing transcriptome sequencing to acquire transcriptome data for white and purple radish flowers. Additionally, the published transcriptome data of sprouts, leaves, and fleshy roots were incorporated to conduct a systematic analysis of the regulatory mechanisms underlying anthocyanin biosynthesis in these four radish tissues. The comparative transcriptome analysis revealed differential expression of the anthocyanin biosynthetic pathway genes DFR, UGT78D2, TT12 and CPC in the four radish tissues. Additionally, the WGCNA results identified RsDFR.9c and RsUGT78D2.2c as hub genes responsible for regulating anthocyanin biosynthesis. By integrating the findings from the comparative transcriptome analysis, WGCNA, and anthocyanin biosynthetic pathway-related gene expression patterns, it is hypothesized that genes RsDFR.9c and RsUGT78D2.2c may serve as pivotal regulators of anthocyanins in the four radish tissues. Furthermore, the tissue-specific expression of the four copies of RsPAP1 is deemed crucial in governing anthocyanin synthesis and accumulation. Our results provide new insights into the molecular mechanism of anthocyanin biosynthesis and accumulation in different tissues of radish.


Assuntos
Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raphanus , Raphanus/genética , Raphanus/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Transcriptoma , Vias Biossintéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo
19.
BMC Genomics ; 25(1): 425, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684983

RESUMO

BACKGROUND: Purple non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis] has become popular because of its richness in anthocyanin. However, anthocyanin only accumulates in the upper epidermis of leaves. Further studies are needed to investigate the molecular mechanisms underlying the specific accumulation of it. RESULTS: In this study, we used the laser capture frozen section method (LCM) to divide purple (ZBC) and green (LBC) non-heading Chinese cabbage leaves into upper and lower epidermis parts (Pup represents the purple upper epidermis, Plow represents the purple lower epidermis, Gup represents the green upper epidermis, Glow represents the green lower epidermis). Through transcriptome sequencing, we found that the DIHYDROFLAVONOL 4-REDUCTASE-encoding gene BcDFR, is strongly expressed in Pup but hardly in others (Plow, Gup, Glow). Further, a deletion and insertion in the promoter of BcDFR in LBC were found, which may interfere with BcDFR expression. Subsequent analysis of gene structure and conserved structural domains showed that BcDFR is highly conserved in Brassica species. The predicted protein-protein interaction network of BcDFR suggests that it interacts with almost all functional proteins in the anthocyanin biosynthesis pathway. Finally, the results of the tobacco transient expression also demonstrated that BcDFR promotes the synthesis and accumulation of anthocyanin. CONCLUSIONS: BcDFR is specifically highly expressed on the upper epidermis of purple non-heading Chinese cabbage leaves and regulates anthocyanin biosynthesis and accumulation. Our study provides new insights into the functional analysis and transcriptional regulatory network of anthocyanin-related genes in purple non-heading Chinese cabbage.


Assuntos
Antocianinas , Brassica , Proteínas de Plantas , Antocianinas/biossíntese , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Microdissecção e Captura a Laser , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA-Seq , Regiões Promotoras Genéticas
20.
BMC Genomics ; 25(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166656

RESUMO

BACKGROUND: TCP proteins are plant specific transcription factors that play important roles in plant growth and development. Despite the known significance of these transcription factors in general plant development, their specific role in fruit growth remains largely uncharted. Therefore, this study explores the potential role of TCP transcription factors in the growth and development of sweet cherry fruits. RESULTS: Thirteen members of the PavTCP family were identified within the sweet cherry plant, with two, PavTCP1 and PavTCP4, found to contain potential target sites for Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. Analyses of cis-acting elements and Arabidopsis homology prediction analyses that the PavTCP family comprises many light-responsive elements. Homologs of PavTCP1 and PavTCP3 in Arabidopsis TCP proteins were found to be crucial to light responses. Shading experiments showed distinct correlation patterns between PavTCP1, 2, and 3 and total anthocyanins, soluble sugars, and soluble solids in sweet cherry fruits. These observations suggest that these genes may contribute significantly to sweet cherry light responses. In particular, PavTCP1 could play a key role, potentially mediated through Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. CONCLUSION: This study is the first to unveil the potential function of TCP transcription factors in the light responses of sweet cherry fruits, paving the way for future investigations into the role of this transcription factor family in plant fruit development.


Assuntos
Arabidopsis , Prunus avium , Prunus avium/genética , Frutas , Arabidopsis/genética , Arabidopsis/metabolismo , Antocianinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA