Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Cancer ; 21(1): 899, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362344

RESUMO

BACKGROUND: Residual breast cancer after neo-adjuvant chemotherapy (NACT) predicts disease outcome and is a surrogate for survival in aggressive breast cancer (BC) subtypes. Pathological complete response (pCR) rate, however, is lower for luminal B BC in comparison to the triple negative (TNBC) and HER2+ subtypes. The addition of immune checkpoint blockade (ICB) to NACT has the potential to increase pCR rate but is hampered by the lower immunogenicity of luminal B BC. Novel strategies are needed to stimulate the immune response and increase the response rate to ICB in luminal B BC. METHODS: The Neo-CheckRay trial is a randomized phase II trial investigating the impact of stereotactic body radiation therapy (SBRT) to the primary breast tumor in combination with an anti-CD73 (oleclumab) to increase response to anti PD-L1 (durvalumab) and NACT. The trial is designed as a three-arm study: NACT + SBRT +/- durvalumab +/- oleclumab. The result at surgery will be evaluated using the residual cancer burden (RCB) index as the primary endpoint. Six patients will be included in a safety run-in, followed by a randomized phase II trial that will include 136 evaluable patients in 3 arms. Inclusion is limited to luminal B breast cancers that are MammaPrint genomic high risk. DISCUSSION: combination of ICB with chemotherapy in luminal B BC might benefit from immune priming agents to increase the response rate. As none have been identified so far, this phase II trial will evaluate SBRT and oleclumab as potential immune priming candidates. TRIAL REGISTRATION: trial registered on ClinicalTrials.gov ( NCT03875573 ) on March 14th, 2019.


Assuntos
Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Protocolos Clínicos , Redes e Vias Metabólicas/efeitos da radiação , Neoplasias da Mama/etiologia , Quimiorradioterapia/métodos , Terapia Combinada , Feminino , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Estadiamento de Neoplasias , Projetos de Pesquisa
2.
Int J Mol Sci ; 20(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823477

RESUMO

Increasing researches have focused on cancer metastasis and development. The ectonucleotidase CD73 is one of the most common cell surface enzymes that are involved in immunosuppression. In this study, the recombinant plasmid pET28a-CD73 was constructed and the CD73 protein was overexpressed in E. coli as an inclusion body that was then subjected to refolding. The anti-CD73 monoclonal antibody (3F7) was obtained by hybridoma technology. The antibody subtype was identified as IgG2a with an affinity constant of 5.75 nM. This antibody could be applied to immunofluorescence and flow cytometry. The results showed that the CD73 protein was not only located in the cytoplasm but also distributed on the surface of triple-negative breast cancer cells MDA-MB-231 and MDA-MB-468. Moreover, the level of CD73 protein was associated with the survival rate. Although the anti-CD73 antibody was not able to inhibit tumor cell growth, it could enhance the cytotoxic effect of Doxorubicin to triple-negative breast cancer cells. In vitro function assay results indicated that anti-CD73 mAb could inhibit cell migration and invasion in both human triple-negative breast cancer and mouse 4T1 cell lines. In this process, both the LC3I/LC3II ratio and p62 protein levels increased, which indicated that the blockage of CD73 could inhibit cell autophagy, and cell migration and invasion were restored by rapamycin. In vivo, anti-CD73 mAb could significantly inhibit lung metastasis of 4T1 cells in a mouse xenograft model. Taken together, this novel anti-CD73 antibody could be developed as an adjuvant drug for triple-negative breast cancer therapy and can be useful in tumor diagnosis.


Assuntos
5'-Nucleotidase/imunologia , Anticorpos Monoclonais/uso terapêutico , Autofagia , Movimento Celular/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , 5'-Nucleotidase/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
3.
Cancer Biol Ther ; 25(1): 2296048, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38206570

RESUMO

CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines in vitro. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.


Assuntos
Anticorpos Monoclonais , Sarcoma , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Imunossupressores , Adenosina , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Microambiente Tumoral
4.
Cancers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884993

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAF) are heterogeneous with multiple functions in breast cancer. Recently, we identified a specific CAF subpopulation (referred to as CAF-S1), which promotes immunosuppression and immunotherapy resistance. METHODS AND RESULTS: Here, by studying a large collection of human samples, we highlight the key function of CD73/NT5E in CAF-S1-mediated immunosuppression in breast cancer. We first reveal that CD73 protein level specifically accumulates in CAF-S1 in breast cancer patients. Interestingly, infiltration of regulatory T lymphocytes (Tregs) is significantly correlated with CD73 expression in stroma but not in epithelium, indicating that CD73 contributes to immunosuppression when expressed in CAF-S1 and not in tumor cells. By performing functional assays based on relevant systems using primary CAF-S1 isolated from patients, we demonstrate that CAF-S1 increase the content in both PD-1+ and CTLA-4+ Tregs. Importantly, the use of a blocking anti-CD73 antibody on CAF-S1 reduces CAF-S1-mediated immunosuppression by preventing expression of these immune checkpoints on Tregs. CONCLUSIONS: Our data support the potential clinical benefit of using both anti-CD73 and immune-checkpoint inhibitors in breast cancer patients for inhibiting CAF-S1-mediated immunosuppression and enhancing anti-tumor immune response.

5.
Cancer Lett ; 425: 174-182, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574275

RESUMO

Approximately 75% of ovarian cancer is diagnosed once metastasis to the peritoneal cavity has occurred. A large proportion of patients eventually develop platinum-resistive tumors, which are considered terminal. In order to provide an alternative a novel fusion protein, mCTH-ANXA5, has been developed for the treatment of recurrent, metastatic ovarian cancer. The fusion protein combines annexin V (ANXA5), an ovarian tumor and tumor vasculature targeting protein, with mutated cystathionine gamma-lyase (mCTH), an enzyme that converts selenomethionine (SeMet) into toxic methylselenol, which generates reactive oxygen species and eventual tumor cell death. In order to further enhance the therapeutic efficacy, anti-CD73 and anti-OX40 immunostimulants were combined with mCTH-ANXA5, resulting in an increase of survival by 100% from 12 to 24 days post-therapy and decrease tumor burden in mice with orthotopic metastatic ovarian cancer. Further evaluation of the combination therapy revealed a strong antibody-mediated immune response, and an increased infiltration of cytotoxic T-cells along with a decrease in tumor promoting immune cells. This study demonstrates the efficacy of a synergistic, multi-drug system by attacking the tumor as well as enlisting the body's own defense system to treat the patient.


Assuntos
Anticorpos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , 5'-Nucleotidase/antagonistas & inibidores , Animais , Anexina A5/genética , Anexina A5/metabolismo , Anticorpos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Sinergismo Farmacológico , Feminino , Humanos , Imunoterapia , Camundongos , Metástase Neoplásica , Recidiva Local de Neoplasia/imunologia , Ligante OX40/antagonistas & inibidores , Neoplasias Ovarianas/imunologia , Pró-Fármacos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Linfócitos T Citotóxicos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA