Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Virol ; 96(10): e29942, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39360648

RESUMO

Approximately 22% of moderately to severely affected atopic dermatitis (AD) patients have a history of eczema herpeticum, a disseminated rash primarily caused by herpes simplex virus type 1 (HSV-1). Reduced activity of antimicrobial peptides may contribute to the increased susceptibility of AD patients to HSV-1. We previously demonstrated that the antimicrobial protein RNase 7 limits HSV-1 infection of human keratinocytes by promoting self-DNA sensing. Here, we addressed whether RNase 7 has any effect on HSV-1 infection when infecting keratinocytes without exogenously added costimulatory DNA, and which step(s) of the infection cycle RNase 7 interferes with. We quantified viral gene expression by RT-qPCR and flow cytometry, viral genome replication by qPCR, virucidal effects by plaque titration, and plaque formation and the subcellular localization of incoming HSV-1 particles by microscopy. Recombinant RNase 7 restricted HSV-1 gene expression, genome replication, and plaque formation in human keratinocytes. It decreased HSV-1 immediate-early transcripts independently of the induction of interferon-stimulated genes. Its main effect was on intracellular infection processes and not on extracellular virions or virus binding to cells. RNase 7 reduced the amount of cell-associated capsids and the HSV-1 envelope glycoprotein D at 3 but not at 0.5 h postinfection. Our data show that RNase 7 directly restricts HSV-1 infection of human keratinocytes, possibly by promoting the degradation of incoming HSV-1 particles. This suggests that RNase 7 may limit HSV-1 spread in the skin and that mechanisms that reduce its activity in the lesional skin of AD patients may increase their susceptibility to eczema herpeticum.


Assuntos
Herpesvirus Humano 1 , Queratinócitos , Ribonucleases , Replicação Viral , Humanos , Queratinócitos/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Ribonucleases/metabolismo , Ribonucleases/genética , Ensaio de Placa Viral , Células Cultivadas
2.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235175

RESUMO

Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.


Assuntos
Doenças Autoimunes , Psoríase , Peptídeos Catiônicos Antimicrobianos/metabolismo , Doenças Autoimunes/tratamento farmacológico , Biomarcadores , Humanos , Psoríase/metabolismo , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/genética , Proteínas S100/metabolismo
3.
Genomics ; 112(6): 3991-3999, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650091

RESUMO

The gastropod mollusk Limax flavus, one of the most widespread pests in China, is used to treat infectious diseases in traditional Chinese medicine. However, little genomic information is available for this non-model species. In this study, the whole-body transcriptome of L. flavus was sequenced using next generation sequencing technology. A total of 6.81 Gb clean reads were obtained, which were assembled into 150,766 transcripts with 132,206 annotated unigenes. Functionally classification assigned 30,542 unigenes to 56 Gene Ontology terms, 16,745 unigenes were divided into 26 euKaryotic Ortholog Groups of proteins categories, and 13,854 unigenes were assigned to 230 Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, we identified 17,251 simple sequence repeats and several kinds of antimicrobial peptide and protein (AMPs) genes. The transcriptome data of L. flavus will provide a valuable genomic resource for further studies on this species, and the AMPs identified in L. flavus will support its medical potential.


Assuntos
Moluscos/genética , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Transcriptoma , Animais , Moluscos/metabolismo
4.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871132

RESUMO

Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Animais , Enterococcus faecium/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Infecções Estafilocócicas/tratamento farmacológico
5.
Biochim Biophys Acta ; 1838(1 Pt B): 339-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23954619

RESUMO

In the present work we have analyzed the effect of StAsp-PSI (plant-specific insert of potato aspartic protease) on the structural and thermotropic properties of the major phospholipid types of bacterial and animal cells. Results obtained suggest that StAsp-PSI induces a destabilization of the membrane bilayers, depending on the time of interaction between the protein and the bilayers, rather than on its concentration. This temporal delay would be consistent with a lateral diffusion of StAsp-PSI monomers to assemble into aggregates to form pores. Like with the results previously reported for the StAsp-PSI circular dichroism, data obtained here from IR spectroscopy show that there are slight changes in the StAsp-PSI secondary structure in the presence of lipid membranes; suggesting that these changes could be related with the StAsp-PSI self-association. Results obtained from steady-state fluorescence anisotropy and differential scanning calorimetry assays suggest that StAsp-PSI interacts with both uncharged and negatively charged phospholipids, modulates the phase polymorphic behavior of model membranes and partitions and buries differentially in the membrane depending on the presence of negatively charged phospholipids.


Assuntos
Ácido Aspártico Proteases/química , Bicamadas Lipídicas/química , Proteínas de Plantas/química , Solanum tuberosum/química , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Permeabilidade , Fosfatidilgliceróis/química , Fosfatidilserinas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Infravermelho
6.
Front Pharmacol ; 13: 845324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712705

RESUMO

Objective: Our previous studies showed an age-related increased prevalence of nasal polyps (NP) and reduced production of S100A8/9 in elderly patients with chronic rhinosinusitis with NP (CRSwNP). In this study, we investigated an unbiased age-related gene expression profile in CRSwNP subjects and healthy controls, and further identified the differences in their tissue remodeling. Methods: Microarrays using NP and uncinate tissues from health controls (elderly, age ≥65 vs. non-elderly, age 18-49) were performed, and differentially regulated genes were analyzed. Quantitative real-time PCR (qPCR), Immunostaining, Periodic acid-Schiff (PAS), trichrome staining, Western blot, and ELISA were performed for further investigation. Results: Microarrays identified differentially expressed genes according to disease and age; 278 in NP vs. controls, 75 in non-elderly NP vs. non-elderly controls, and 32 in elderly NP vs. elderly controls. qPCR confirmed that the PLAT gene was downregulated and the SERPINB2 gene upregulated in NP vs. controls. The serous glandular cell-derived antimicrobial protein/peptide-related genes such as BPIFB3, BPIFB2, LPO, and MUC7 were remarkably reduced in NP, regardless of age. SERPINE1 gene (plasminogen activator inhibitor-1, PAI-1) expression was significantly increased in elderly NP versus elderly controls. IHC and western blot confirmed significantly decreased production of MUC7 and LPO in NP versus controls. There was a trend of age-related reduction of submucosal gland cells in normal controls. Trichrome and immunofluorescence staining demonstrated an age-related increase of collagen and fibrin deposition in NP, consistent with increased PAI-1 production. Conclusion: This study demonstrated age-related differential glandular remodeling patterns and fibrosis in NP and normal controls. PAI-1 expression was significantly increased in elderly NP versus elderly controls, suggesting PAI-1 as a potential treatment target in elderly NP.

7.
Front Immunol ; 13: 946428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967448

RESUMO

The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.


Assuntos
Anti-Infecciosos , Casca de Ovo , Animais , Antibacterianos , Anti-Infecciosos/metabolismo , Biomineralização , Cálcio/metabolismo , Galinhas/metabolismo , Casca de Ovo/química , Casca de Ovo/metabolismo , Peptídeos/metabolismo , Filogenia , Proteoma/metabolismo
8.
Adv Drug Deliv Rev ; 180: 114066, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813794

RESUMO

Antimicrobial peptides and proteins (APPs) are becoming increasingly important in targeting multidrug-resistant (MDR) bacteria. APPs is a rapidly emerging area with novel molecules being produced and further optimised to enhance antimicrobial efficacy, while overcoming issues associated with biologics such as potential toxicity and low bioavailability resulting from short half-life. Inhalation delivery of these agents can be an effective treatment of respiratory infections owing to the high local drug concentration in the lungs with lower exposure to systemic circulation hence reducing systemic toxicity. This review describes the recent studies on inhaled APPs, including in vitro and in vivo antimicrobial activities, toxicity assessments, and formulation strategies whenever available. The review also includes studies on combination of APPs with other antimicrobial agents to achieve enhanced synergistic antimicrobial effect. Since different APPs have different biological and chemical stabilities, a targeted formulation strategy should be considered for developing stable and inhalable antimicrobial peptides and proteins. These strategies include the use of sodium chloride to reduce electrostatic interaction between APP and extracellular DNA in sputum, the use of D-enantiomers or dendrimers to minimise protease-mediated degradation and or the use of prodrugs to reduce toxicity. Although great effort has been put towards optimising the biological functions of APPs, studies assessing biological stability in inhalable aerosols are scarce, particularly for novel molecules. As such, formulation and manufacture of inhalable liquid and powder formulations of APPs are underexplored, yet they are crucial areas of research for clinical translation.


Assuntos
Antibacterianos/administração & dosagem , Peptídeos Antimicrobianos/administração & dosagem , Proteínas/administração & dosagem , Administração por Inalação , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Peptídeos Antimicrobianos/efeitos adversos , Peptídeos Antimicrobianos/farmacocinética , Química Farmacêutica/métodos , Desenvolvimento de Medicamentos/métodos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Humanos , Proteínas/efeitos adversos , Proteínas/farmacocinética , Distribuição Tecidual
9.
Front Microbiol ; 12: 750556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975782

RESUMO

Silver nanoparticles (AgNPs) and antimicrobial peptides or proteins (AMPs/APs) are both considered as promising platforms for the development of novel therapeutic agents effective against the growing number of drug-resistant pathogens. The observed synergy of their antibacterial activity suggested the prospect of introducing antimicrobial peptides or small antimicrobial proteins into the gelatinized coating of AgNPs. Conjugates with protegrin-1, indolicidin, protamine, histones, and lysozyme were comparatively tested for their antibacterial properties and compared with unconjugated nanoparticles and antimicrobial polypeptides alone. Their toxic effects were similarly tested against both normal eukaryotic cells (human erythrocytes, peripheral blood mononuclear cells, neutrophils, and dermal fibroblasts) and tumor cells (human erythromyeloid leukemia K562 and human histiocytic lymphoma U937 cell lines). The AMPs/APs retained their ability to enhance the antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria, including drug-resistant strains, when conjugated to the AgNP surface. The small, membranolytic protegrin-1 was the most efficient, suggesting that a short, rigid structure is not a limiting factor despite the constraints imposed by binding to the nanoparticle. Some of the conjugated AMPs/APs clearly affected the ability of nanoparticle to permeabilize the outer membrane of Escherichia coli, but none of the conjugated AgNPs acquired the capacity to permeabilize its cytoplasmic membrane, regardless of the membranolytic potency of the bound polypeptide. Low hemolytic activity was also found for all AgNP-AMP/AP conjugates, regardless of the hemolytic activity of the free polypeptides, making conjugation a promising strategy not only to enhance their antimicrobial potential but also to effectively reduce the toxicity of membranolytic AMPs. The observation that metabolic processes and O2 consumption in bacteria were efficiently inhibited by all forms of AgNPs is the most likely explanation for their rapid and bactericidal action. AMP-dependent properties in the activity pattern of various conjugates toward eukaryotic cells suggest that immunomodulatory, wound-healing, and other effects of the polypeptides are at least partially transferred to the nanoparticles, so that functionalization of AgNPs may have effects beyond just modulation of direct antibacterial activity. In addition, some conjugated nanoparticles are selectively toxic to tumor cells. However, caution is required as not all modulatory effects are necessarily beneficial to normal host cells.

10.
Pharmaceuticals (Basel) ; 9(4)2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27809281

RESUMO

Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA