Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688133

RESUMO

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Animais , Cromatina , Éxons , Camundongos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA
2.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38309276

RESUMO

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Assuntos
Poliadenilação , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Íntrons
3.
Mol Cell ; 77(5): 1044-1054.e3, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31924448

RESUMO

Antisense oligonucleotides (ASOs) that trigger RNase-H-mediated cleavage are commonly used to knock down transcripts for experimental or therapeutic purposes. In particular, ASOs are frequently used to functionally interrogate long noncoding RNAs (lncRNAs) and discriminate lncRNA loci that produce functional RNAs from those whose activity is attributable to the act of transcription. Transcription termination is triggered by cleavage of nascent transcripts, generally during polyadenylation, resulting in degradation of the residual RNA polymerase II (Pol II)-associated RNA by XRN2 and dissociation of elongating Pol II. Here, we show that ASOs act upon nascent transcripts and, consequently, induce premature transcription termination downstream of the cleavage site in an XRN2-dependent manner. Targeting the transcript 3' end with ASOs, however, allows transcript knockdown while preserving Pol II association with the gene body. These results demonstrate that the effects of ASOs on transcription must be considered for appropriate experimental and therapeutic use of these reagents.


Assuntos
Cromatina/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Terminação da Transcrição Genética , Cromatina/genética , Exorribonucleases/metabolismo , Células HCT116 , Células HEK293 , Humanos , Modelos Genéticos , Oligonucleotídeos Antissenso/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Fatores de Tempo
4.
Mol Cell ; 79(5): 710-727, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32853546

RESUMO

The coronavirus disease 2019 (COVID-19) that is wreaking havoc on worldwide public health and economies has heightened awareness about the lack of effective antiviral treatments for human coronaviruses (CoVs). Many current antivirals, notably nucleoside analogs (NAs), exert their effect by incorporation into viral genomes and subsequent disruption of viral replication and fidelity. The development of anti-CoV drugs has long been hindered by the capacity of CoVs to proofread and remove mismatched nucleotides during genome replication and transcription. Here, we review the molecular basis of the CoV proofreading complex and evaluate its potential as a drug target. We also consider existing nucleoside analogs and novel genomic techniques as potential anti-CoV therapeutics that could be used individually or in combination to target the proofreading mechanism.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Genoma Viral , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , RNA Viral/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/química , Alanina/uso terapêutico , Amidas/química , Amidas/uso terapêutico , Antivirais/química , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/virologia , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Terapia de Alvo Molecular/métodos , Mutação , Pneumonia Viral/virologia , Pirazinas/química , Pirazinas/uso terapêutico , RNA Viral/antagonistas & inibidores , RNA Viral/metabolismo , Ribonucleosídeos/química , Ribonucleosídeos/uso terapêutico , SARS-CoV-2 , Índice de Gravidade de Doença , Transcrição Gênica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
5.
EMBO J ; 42(21): e114760, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37728251

RESUMO

RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.


Assuntos
Pandemias , RNA , Humanos , Edição de Genes , Interferência de RNA , Terapia Genética
6.
Immunol Rev ; 313(1): 402-419, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369963

RESUMO

The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.


Assuntos
Proteínas do Sistema Complemento , Hemoglobinúria Paroxística , Humanos , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Hemoglobinúria Paroxística/tratamento farmacológico , Hemoglobinúria Paroxística/genética , Marcação de Genes , Via Alternativa do Complemento
7.
Trends Biochem Sci ; 46(5): 351-365, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309323

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently creating a global health emergency. This crisis is driving a worldwide effort to develop effective vaccines, prophylactics, and therapeutics. Nucleic acid (NA)-based treatments hold great potential to combat outbreaks of coronaviruses (CoVs) due to their rapid development, high target specificity, and the capacity to increase druggability. Here, we review key anti-CoV NA-based technologies, including antisense oligonucleotides (ASOs), siRNAs, RNA-targeting clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas), and mRNA vaccines, and discuss improved delivery methods and combination therapies with other antiviral drugs.


Assuntos
Vacinas contra COVID-19 , Sistemas CRISPR-Cas , RNA Mensageiro , RNA Viral , SARS-CoV-2 , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/terapia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Humanos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/imunologia , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
8.
Circulation ; 150(15): 1199-1210, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39155863

RESUMO

BACKGROUND: Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in CALM1, CALM2, or CALM3, which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function. METHODS: We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of CALM1 pathogenic variants. RESULTS: Human CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes exhibited prolonged action potentials, modeling congenital long QT syndrome. CALM1 knockout or CALM1-depleting ASOs did not alter CaM protein level and normalized repolarization duration of CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes. Similarly, an ASO targeting murine Calm1 depleted Calm1 transcript without affecting CaM protein level. This ASO alleviated drug-induced bidirectional ventricular tachycardia in Calm1N98S/+ mice without a deleterious effect on cardiac electrical or contractile function. CONCLUSIONS: These results provide proof of concept that ASOs targeting individual calmodulin genes are potentially effective and safe therapies for calmodulinopathies.


Assuntos
Calmodulina , Miócitos Cardíacos , Oligonucleotídeos Antissenso , Animais , Calmodulina/genética , Calmodulina/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Humanos , Miócitos Cardíacos/metabolismo , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/terapia , Síndrome do QT Longo/fisiopatologia , Modelos Animais de Doenças , Potenciais de Ação/efeitos dos fármacos , Camundongos Knockout , Terapia Genética/métodos
9.
Circulation ; 150(9): 724-735, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39186530

RESUMO

Familial hypercholesterolemia (FH) is a genetic disease that leads to elevated low-density lipoprotein cholesterol levels and risk of coronary heart disease. Current therapeutic options for FH remain relatively limited and only partially effective in both lowering low-density lipoprotein cholesterol and modifying coronary heart disease risk. The unique characteristics of nucleic acid therapies to target the underlying cause of the disease can offer solutions unachievable with conventional medications. DNA- and RNA-based therapeutics have the potential to transform the care of patients with FH. Recent advances are overcoming obstacles to clinical translation of nucleic acid-based medications, including greater stability of the formulations as well as site-specific delivery, making gene-based therapy for FH an alternative approach for treatment of FH.


Assuntos
Terapia Genética , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Terapia Genética/métodos , Animais , LDL-Colesterol/sangue
10.
Brain ; 147(4): 1231-1246, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37812817

RESUMO

Dravet syndrome is an intractable developmental and epileptic encephalopathy caused by de novo variants in SCN1A resulting in haploinsufficiency of the voltage-gated sodium channel Nav1.1. We showed previously that administration of the antisense oligonucleotide STK-001, also called ASO-22, generated using targeted augmentation of nuclear gene output technology to prevent inclusion of the nonsense-mediated decay, or poison, exon 20N in human SCN1A, increased productive Scn1a transcript and Nav1.1 expression and reduced the incidence of electrographic seizures and sudden unexpected death in epilepsy in a mouse model of Dravet syndrome. Here, we investigated the mechanism of action of ASO-84, a surrogate for ASO-22 that also targets splicing of SCN1A exon 20N, in Scn1a+/- Dravet syndrome mouse brain. Scn1a +/- Dravet syndrome and wild-type mice received a single intracerebroventricular injection of antisense oligonucleotide or vehicle at postnatal Day 2. We examined the electrophysiological properties of cortical pyramidal neurons and parvalbumin-positive fast-spiking interneurons in brain slices at postnatal Days 21-25 and measured sodium currents in parvalbumin-positive interneurons acutely dissociated from postnatal Day 21-25 brain slices. We show that, in untreated Dravet syndrome mice, intrinsic cortical pyramidal neuron excitability was unchanged while cortical parvalbumin-positive interneurons showed biphasic excitability with initial hyperexcitability followed by hypoexcitability and depolarization block. Dravet syndrome parvalbumin-positive interneuron sodium current density was decreased compared to wild-type. GABAergic signalling to cortical pyramidal neurons was reduced in Dravet syndrome mice, suggesting decreased GABA release from interneurons. ASO-84 treatment restored action potential firing, sodium current density and GABAergic signalling in Dravet syndrome parvalbumin-positive interneurons. Our work suggests that interneuron excitability is selectively affected by ASO-84. This new work provides critical insights into the mechanism of action of this antisense oligonucleotide and supports the potential of antisense oligonucleotide-mediated upregulation of Nav1.1 as a successful strategy to treat Dravet syndrome.


Assuntos
Epilepsias Mioclônicas , Oligonucleotídeos Antissenso , Camundongos , Animais , Humanos , Oligonucleotídeos Antissenso/farmacologia , Parvalbuminas/metabolismo , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Interneurônios/metabolismo , Ácido gama-Aminobutírico , Modelos Animais de Doenças
11.
Mol Ther ; 32(5): 1359-1372, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429929

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia. Currently, no preventive or disease-modifying treatments exist for this progressive neurodegenerative disorder, although efforts using gene silencing approaches are under clinical trial investigation. The disease is caused by a CAG repeat expansion in the mutant gene, ATXN3, producing an enlarged polyglutamine tract in the mutant protein. Similar to other paradigmatic neurodegenerative diseases, studies evaluating the pathogenic mechanism focus primarily on neuronal implications. Consequently, therapeutic interventions often overlook non-neuronal contributions to disease. Our lab recently reported that oligodendrocytes display some of the earliest and most progressive dysfunction in SCA3 mice. Evidence of disease-associated oligodendrocyte signatures has also been reported in other neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Here, we assess the effects of anti-ATXN3 antisense oligonucleotide (ASO) treatment on oligodendrocyte dysfunction in premanifest and symptomatic SCA3 mice. We report a severe, but modifiable, deficit in oligodendrocyte maturation caused by the toxic gain-of-function of mutant ATXN3 early in SCA3 disease that is transcriptionally, biochemically, and functionally rescued with anti-ATXN3 ASO. Our results highlight the promising use of an ASO therapy across neurodegenerative diseases that requires glial targeting in addition to affected neuronal populations.


Assuntos
Ataxina-3 , Modelos Animais de Doenças , Doença de Machado-Joseph , Oligodendroglia , Oligonucleotídeos Antissenso , Animais , Oligodendroglia/metabolismo , Camundongos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/patologia , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos Transgênicos
12.
Mol Ther ; 32(3): 580-608, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291757

RESUMO

Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Humanos , RNA , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia
13.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243599

RESUMO

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Splicing de RNA , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Stargardt/genética , Mutação , Células Fotorreceptoras
14.
Proc Natl Acad Sci U S A ; 119(36): e2207956119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037350

RESUMO

Recent advances in drug development have seen numerous successful clinical translations using synthetic antisense oligonucleotides (ASOs). However, major obstacles, such as challenging large-scale production, toxicity, localization of oligonucleotides in specific cellular compartments or tissues, and the high cost of treatment, need to be addressed. Thiomorpholino oligonucleotides (TMOs) are a recently developed novel nucleic acid analog that may potentially address these issues. TMOs are composed of a morpholino nucleoside joined by thiophosphoramidate internucleotide linkages. Unlike phosphorodiamidate morpholino oligomers (PMOs) that are currently used in various splice-switching ASO drugs, TMOs can be synthesized using solid-phase oligonucleotide synthesis methodologies. In this study, we synthesized various TMOs and evaluated their efficacy to induce exon skipping in a Duchenne muscular dystrophy (DMD) in vitro model using H2K mdx mouse myotubes. Our experiments demonstrated that TMOs can efficiently internalize and induce excellent exon 23 skipping potency compared with a conventional PMO control and other widely used nucleotide analogs, such as 2'-O-methyl and 2'-O-methoxyethyl ASOs. Notably, TMOs performed well at low concentrations (5-20 nM). Therefore, the dosages can be minimized, which may improve the drug safety profile. Based on the present study, we propose that TMOs represent a new, promising class of nucleic acid analogs for future oligonucleotide therapeutic development.


Assuntos
Terapia Genética , Morfolinos , Distrofia Muscular de Duchenne , Splicing de RNA , Animais , Modelos Animais de Doenças , Terapia Genética/métodos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos mdx , Morfolinos/genética , Morfolinos/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Mensageiro
15.
Proc Natl Acad Sci U S A ; 119(29): e2113180119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858356

RESUMO

The mutant form of the guanosine triphosphatase (GTPase) KRAS is a key driver in human tumors but remains a challenging therapeutic target, making KRASMUT cancers a highly unmet clinical need. Here, we report a class of bottlebrush polyethylene glycol (PEG)-conjugated antisense oligonucleotides (ASOs) for potent in vivo KRAS depletion. Owing to their highly branched architecture, these molecular nanoconstructs suppress nearly all side effects associated with DNA-protein interactions and substantially enhance the pharmacological properties of the ASO, such as plasma pharmacokinetics and tumor uptake. Systemic delivery to mice bearing human non-small-cell lung carcinoma xenografts results in a significant reduction in both KRAS levels and tumor growth, and the antitumor performance well exceeds that of current popular ASO paradigms, such as chemically modified oligonucleotides and PEGylation using linear or slightly branched PEG. Importantly, these conjugates relax the requirement on the ASO chemistry, allowing unmodified, natural phosphodiester ASOs to achieve efficacy comparable to that of chemically modified ones. Both the bottlebrush polymer and its ASO conjugates appear to be safe and well tolerated in mice. Together, these data indicate that the molecular brush-ASO conjugate is a promising therapeutic platform for the treatment of KRAS-driven human cancers and warrant further preclinical and clinical development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso , Proteínas Proto-Oncogênicas p21(ras) , Animais , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Neoplasias Pulmonares/terapia , Camundongos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Polietilenoglicóis , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35017301

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), and the CFTR-W1282X nonsense mutation causes a severe form of CF. Although Trikafta and other CFTR-modulation therapies benefit most CF patients, targeted therapy for patients with the W1282X mutation is lacking. The CFTR-W1282X protein has residual activity but is expressed at a very low level due to nonsense-mediated messenger RNA (mRNA) decay (NMD). NMD-suppression therapy and read-through therapy are actively being researched for CFTR nonsense mutants. NMD suppression could increase the mutant CFTR mRNA, and read-through therapies may increase the levels of full-length CFTR protein. However, these approaches have limitations and potential side effects: because the NMD machinery also regulates the expression of many normal mRNAs, broad inhibition of the pathway is not desirable, and read-through drugs are inefficient partly because the mutant mRNA template is subject to NMD. To bypass these issues, we pursued an exon-skipping antisense oligonucleotide (ASO) strategy to achieve gene-specific NMD evasion. A cocktail of two splice-site-targeting ASOs induced the expression of CFTR mRNA without the premature-termination-codon-containing exon 23 (CFTR-Δex23), which is an in-frame exon. Treatment of human bronchial epithelial cells with this cocktail of ASOs that target the splice sites flanking exon 23 results in efficient skipping of exon 23 and an increase in CFTR-Δex23 protein. The splice-switching ASO cocktail increases the CFTR-mediated chloride current in human bronchial epithelial cells. Our results set the stage for developing an allele-specific therapy for CF caused by the W1282X mutation.


Assuntos
Fibrose Cística/genética , Fibrose Cística/terapia , Éxons/genética , Terapia Genética , Oligonucleotídeos Antissenso/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HEK293 , Humanos , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
J Lipid Res ; 65(3): 100514, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309418

RESUMO

Human genetic evidence suggests a protective role of loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) for liver fibrotic diseases. Although there is limited preclinical experimental data on Hsd17b13 antisense oligonucleotide (ASO) or siRNA in a fibrosis model, several ASO and siRNA approaches are being tested clinically as potential therapies for nonalcoholic steatohepatitis (NASH). The aim of this study was to assess the therapeutic potential of Hsd17b13 ASO in a preclinical advanced NASH-like hepatic fibrosis in vivo model. In vitro testing on primary hepatocytes demonstrated that Hsd17b13 ASO exhibited strong efficacy and specificity for knockdown of the Hsd17b13 gene. In choline-deficient, L-amino acid-defined, HFD (CDAHFD)-induced steatotic and fibrotic mice, therapeutic administration of Hsd17b13 ASO resulted in a significant and dose-dependent reduction of hepatic Hsd17b13 gene expression. The CDAHFD group exhibited considerably elevated liver enzyme levels, hepatic steatosis score, hepatic fibrosis, and increased fibrotic and inflammatory gene expression, indicating an advanced NASH-like hepatic fibrosis phenotype. Although Hsd17b13 ASO therapy significantly affected hepatic steatosis, it had no effect on hepatic fibrosis. Our findings demonstrate, for the first time, that Hsd17b13 ASO effectively suppressed Hsd17b13 gene expression both in vitro and in vivo, and had a modulatory effect on hepatic steatosis in mice, but did not affect fibrosis in the CDAHFD mouse model of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Modelos Animais de Doenças , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/metabolismo
18.
Annu Rev Pharmacol Toxicol ; 61: 831-852, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33035446

RESUMO

The genetic basis for most inherited neurodegenerative diseases has been identified, yet there are limited disease-modifying therapies for these patients. A new class of drugs-antisense oligonucleotides (ASOs)-show promise as a therapeutic platform for treating neurological diseases. ASOs are designed to bind to the RNAs either by promoting degradation of the targeted RNA or by elevating expression by RNA splicing. Intrathecal injection into the cerebral spinal fluid results in broad distribution of antisense drugs and long-term effects. Approval of nusinersen in 2016 demonstrated that effective treatments for neurodegenerative diseases can be identified and that treatments not only slow disease progression but also improve some symptoms. Antisense drugs are currently in development for amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, Parkinson's disease, and Angelman syndrome, and several drugs are in late-stage research for additional neurological diseases. This review highlights the advances in antisense technology as potential treatments for neurological diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Preparações Farmacêuticas , Humanos , Oligonucleotídeos Antissenso , RNA
19.
J Gene Med ; 26(2): e3677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380785

RESUMO

Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the mecp2 gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.


Assuntos
Deficiência Intelectual , Síndrome de Rett , Camundongos , Animais , Feminino , Humanos , Síndrome de Rett/genética , Síndrome de Rett/terapia , Peixe-Zebra/genética , Regulação da Expressão Gênica , Mutação
20.
Allergy ; 79(3): 724-734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009241

RESUMO

BACKGROUND: Hereditary angioedema (HAE) is a potentially fatal disease characterized by unpredictable, recurrent, often disabling swelling attacks. In a randomized phase 2 study, donidalorsen reduced HAE attack frequency and improved patient quality-of-life (ISIS721744-CS2, NCT04030598). We report the 2-year interim analysis of the phase 2 open-label extension (OLE) study (ISIS 721744-CS3, NCT04307381). METHODS: In the OLE, the on-treatment study period consisted of fixed (weeks 1-13, donidalorsen 80 mg subcutaneously every 4 weeks [Q4W]) and flexible (weeks 17-105, donidalorsen 80 mg Q4W, 80 mg every 8 weeks [Q8W], or 100 mg Q4W) dosing periods. The primary outcome was incidence and severity of treatment-emergent adverse events (TEAEs). The secondary outcomes included efficacy, pharmacodynamic, and quality-of-life assessments. RESULTS: Seventeen patients continued in the OLE study. No serious TEAEs or TEAEs leading to treatment discontinuation were reported. Mean monthly HAE attack rate was 96% lower than the study run-in baseline rate (mean, 0.06/month; 95% confidence interval [CI], 0.02-0.10; median, 0.04 on-treatment vs. mean, 2.70/month; 95% CI, 1.94-3.46; median, 2.29 at baseline). Mean monthly attack rate for Q8W dosing (n = 8) was 0.29 (range, 0.0-1.7; 95% CI, -0.21 to 0.79; median, 0.00). Mean plasma prekallikrein and D-dimer concentrations decreased, and Angioedema Quality of Life Questionnaire total score improved from baseline to week 105 with donidalorsen. CONCLUSION: The 2-year interim results of this phase 2 OLE study of donidalorsen in patients with HAE demonstrated no new safety signals; donidalorsen was well tolerated. There was durable efficacy with a 96% reduction in HAE attacks.


Assuntos
Angioedemas Hereditários , Oligonucleotídeos , Humanos , Angioedemas Hereditários/tratamento farmacológico , Pré-Calicreína , Qualidade de Vida , Resultado do Tratamento , Proteína Inibidora do Complemento C1/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA