Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Virol ; 98(6): e0164123, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690874

RESUMO

Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galß1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Polissacarídeos , Receptores Virais , Proteínas Virais de Fusão , Ligação Viral , Humanos , Linhagem Celular , Metapneumovirus/metabolismo , Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Interações entre Hospedeiro e Microrganismos , Proteoglicanas de Heparan Sulfato/metabolismo
2.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37669225

RESUMO

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Assuntos
Antivirais , Descoberta de Drogas , Antivirais/farmacologia , Antivirais/uso terapêutico , Bioensaio
3.
Molecules ; 28(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894510

RESUMO

Human immunodeficiency virus-type 1 (HIV-1) remains one of the leading contributors to the global burden of disease, and novel antiretroviral agents with alternative mechanisms are needed to cure this infection. Here, we describe an exploratory attempt to optimize the antiretroviral properties of benfluron, a cytostatic agent previously reported to exhibit strong anti-HIV activity likely based on inhibitory actions on virus transcription and Rev-mediated viral RNA export. After obtaining six analogs designed to modify the benzo[c]fluorenone system of the parent molecule, we examined their antiretroviral and toxicity properties together with their capacity to recognize the Rev Recognition Element (RRE) of the virus RNA and inhibit the RRE-Rev interaction. The results indicated that both the benzo[c] and cyclopentanone components of benfluron are required for strong RRE-Rev target engagement and antiretroviral activity and revealed the relative impact of these moieties on RRE affinity, RRE-Rev inhibition, antiviral action and cellular toxicity. These data provide insights into the biological properties of the benzo[c]fluorenone scaffold and contribute to facilitating the design of new anti-HIV agents based on the inhibition of Rev function.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , RNA Viral/genética , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Conformação de Ácido Nucleico
4.
Med Chem Res ; : 1-10, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37362321

RESUMO

Drug discovery is a difficult task, and is even more challenging when the target evolves during therapy. Antiviral drug therapy is an excellent example, exemplified by the evolution of therapeutic approaches for treatment of hepatitis C and HIV-1. Nick Meanwell and his colleagues made important contributions leading to molecules for treatment of hepatitis C and HIV-1, each with distinct mechanisms of action. This review summarizes the discovery and impact of these drugs, and will highlight, where applicable, the broader contributions of these discoveries to medicinal chemistry and drug discovery.

5.
Adv Exp Med Biol ; 1062: 115-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29845529

RESUMO

Viruses from the Flavivirus family are the causative agents of dengue fever, Zika, Japanese encephalitis, West Nile encephalitis or Yellow fever and constitute major or emerging public health problems. A better understanding of the flavivirus replication cycle is likely to offer new opportunities for the design of antiviral therapies to treat severe conditions provoked by these viruses, but it should also help reveal fundamental biological mechanisms of the host cell. During virus replication, RNA synthesis is mediated by a dynamic and membrane-bound multi-protein assembly, named the replication complex (RC). The RC is composed of both viral and host-cell proteins that assemble within vesicles composed of the endoplasmic reticulum membrane, near the nucleus. At the heart of the flavivirus RC lies NS4B, a viral integral membrane protein that plays a role in virulence and in down-regulating the innate immune response. NS4B binds to the NS2B-NS3 protease-helicase, which itself interacts with the NS5 methyl-transferase polymerase. We present an overview of recent structural and functional data that augment our understanding of how viral RNA is replicated by dengue virus. We focus on structural data that illuminate the various roles played by proteins NS2B-NS3, NS4B and NS5. By participating in viral RNA cap methylation, the NS5 methyltransferase enables the virus to escape the host cell innate immune response. We present the molecular basis for this activity. We summarize what we know about the network of interactions established by NS2B-NS3, NS4B and NS5 (their "interactome"). This leads to a working model that is captured in the form of a rather naïve "cartoon", which we hope will be refined towards an atomic model in the near future.


Assuntos
Vírus da Dengue/fisiologia , Dengue/imunologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Dengue/virologia , Vírus da Dengue/genética , Humanos , Evasão da Resposta Imune , Imunidade Inata , Proteínas não Estruturais Virais/genética
6.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695047

RESUMO

The development of small-molecule inhibitors of influenza virus Hemagglutinin could be relevant to the opposition of the diffusion of new pandemic viruses. In this work, we made use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the interaction between two derivatives of sialic acid, Neu5Ac-α-(2,6)-Gal-β-(1⁻4)-GlcNAc and Neu5Ac-α-(2,3)-Gal-β-(1⁻4)-GlcNAc, and hemagglutinin directly expressed on the surface of recombinant human cells. We analyzed the interaction of these trisaccharides with 293T cells transfected with the H5 and H1 variants of hemagglutinin, which thus retain their native trimeric conformation in such a realistic environment. By exploiting the magnetization transfer between the protein and the ligand, we obtained evidence of the binding event, and identified the epitope. We analyzed the conformational features of the glycans with an approach combining NMR spectroscopy and data-driven molecular dynamics simulations, thus obtaining useful information for an efficient drug design.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Ressonância Magnética Nuclear Biomolecular , Receptores Virais/química , Animais , Membrana Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ácido N-Acetilneuramínico/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , Relação Estrutura-Atividade , Transfecção
7.
Virology ; 598: 110174, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029332

RESUMO

Getah virus (GETV) is a re-emerging mosquito-borne RNA virus that induces fever, hind limb edema, swollen submandibular lymph nodes, and urticaria in horses. In pigs, the virus often results in stillbirths among pregnant sows, and neurological symptoms leading to death in piglets. Currently, there are no specific treatments or drugs available for GETV infection. The use of reporter viruses to monitor viral replication and spread in real-time within infected cells and animals provides a powerful tool for targeting antiviral drugs throughout the viral life cycle. Their fluorescence-tracked characteristics greatly facilitate virus neutralization tests (VNTs). In this study, we engineered two recombinant viruses by inserting different reporter protein genes at the 3' end of the structural protein gene, an unreported location that can accommodate exogenous genes. The rGEEiLOV and rGEEGFP viruses demonstrated genetic stability for at least five passages and replicated at a rate similar to that of the parental virus in BHK-21 cells. The rGEEGFP virus facilitated viral neutralization testing. Additionally, we used the reporter virus rGEEGFP to confirm ivermectin, a broad-spectrum antiparasitic agent, as a potential inhibitor of GETV in vitro. Ivermectin appears to inhibit the early replication stages of the virus and can block cell-to-cell viral transmission. In conclusion, rGEEGFP holds significant potential for antiviral screening to identify specific inhibitors against GETV and for use in viral neutralization tests.


Assuntos
Antivirais , Genes Reporter , Proteínas de Fluorescência Verde , Testes de Neutralização , Animais , Antivirais/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Replicação Viral/efeitos dos fármacos , Alphavirus/genética , Alphavirus/efeitos dos fármacos , Suínos , Cricetinae
8.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026851

RESUMO

Helicases have emerged as promising targets for the development of antiviral drugs; however, the family remains largely undrugged. To support the focused development of viral helicase inhibitors we identified, collected, and integrated all chemogenomics data for all available helicases from the ChEMBL database. After thoroughly curating and enriching the data with relevant annotations we have created a derivative database of helicase inhibitors which we dubbed Heli-SMACC (Helicase-targeting SMAll Molecule Compound Collection). The current version of Heli-SMACC contains 20,432 bioactivity entries for viral, human, and bacterial helicases. We have selected 30 compounds with promising viral helicase activity and tested them in a SARS-CoV-2 NSP13 ATPase assay. Twelve compounds demonstrated ATPase inhibition and a consistent dose-response curve. The Heli-SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel helicase inhibitors. Heli-SMACC is publicly available at https://smacc.mml.unc.edu.

9.
SLAS Discov ; 29(3): 100145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301954

RESUMO

SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.


Assuntos
Antivirais , Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Antivirais/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Humanos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Mutação/genética , RNA Viral/genética , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , RNA Helicases/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , COVID-19/virologia
10.
Heliyon ; 10(11): e31987, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867992

RESUMO

Background: Anti-SARS-CoV-2 and immunomodulatory drugs are important for treating clinically severe patients with respiratory distress symptoms. Alpha- and gamma-mangostins (AM and GM) were previously reported as potential 3C-like protease (3CLpro) and Angiotensin-converting enzyme receptor 2 (ACE2)-binding inhibitors in silico. Objective: We aimed to evaluate two active compounds, AM and GM, from Garcinia mangostana for their antivirals against SARS-CoV-2 in live virus culture systems and their cytotoxicities using standard methods. Also, we aimed to prove whether 3CLpro and ACE2 neutralization were major targets and explored whether any additional targets existed. Methods: We tested the translation and replication efficiencies of SARS-CoV-2 in the presence of AM and GM. Initial and subgenomic translations were evaluated by immunofluorescence of SARS-CoV-2 3CLpro and N expressions at 16 h after infection. The viral genome was quantified and compared with the untreated group. We also evaluated the efficacies and cytotoxicities of AM and GM against four strains of SARS-CoV-2 (wild-type B, B.1.167.2, B.1.36.16, and B.1.1.529) in Vero E6 cells. The potential targets were evaluated using cell-based anti-attachment, time-of-drug addition, in vitro 3CLpro activities, and ACE2-binding using a surrogated viral neutralization test (sVNT). Moreover, additional targets were explored using combinatorial network-based interactions and Chemical Similarity Ensemble Approach (SEA). Results: AM and GM reduced SARS-CoV-2 3CLpro and N expressions, suggesting that initial and subgenomic translations were globally inhibited. AM and GM inhibited all strains of SARS-CoV-2 at EC50 of 0.70-3.05 µM, in which wild-type B was the most susceptible strain (EC50 0.70-0.79 µM). AM was slightly more efficient in the variants (EC50 0.88-2.41 µM), resulting in higher selectivity indices (SI 3.65-10.05), compared to the GM (EC50 0.94-3.05 µM, SI 1.66-5.40). GM appeared to be more toxic than AM in both Vero E6 and Calu-3 cells. Cell-based anti-attachment and time-of-addition suggested that the potential molecular target could be at the post-infection. 3CLpro activity and ACE2 binding were interfered with in a dose-dependent manner but were insufficient to be a major target. Combinatorial network-based interaction and chemical similarity ensemble approach (SEA) suggested that fatty acid synthase (FASN), which was critical for SARS-CoV-2 replication, could be a target of AM and GM. Conclusion: AM and GM inhibited SARS-CoV-2 with the highest potency at the wild-type B and the lowest at the B.1.1.529. Multiple targets were expected to integratively inhibit viral replication in cell-based system.

11.
Vet Microbiol ; 281: 109742, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075664

RESUMO

Getah virus (GETV), is an often neglected and re-emerging mosquito-borne RNA virus. GETV can cause illness accompanied with high fever, rash, incapacitating arthralgia and chronic arthritis or encephalitic disease in affected animals. Currently, there is no specific treatment or vaccine against GETV infection. In this study, we developed three recombinant viruses by inserting different reporter protein genes between the Cap and pE2 genes. The reporter viruses exhibited high replication capacity similar to the parental virus. The rGECiLOV and rGECGFP viruses were genetically stable within at least ten rounds of passages in BHK-21 cells. We confirmed that the reporter virus, rGECGFP, facilitated the antiviral assays against GETV by testing it with the known inhibitor, ribavirin. It was also found that the compound, doxycycline, showed an inhibitory effect on GETV replication. In addition, rGECGFP was found to be an authentic mimic of the parental virus infection in 3-day-old mice, but with milder pathogenicity. The reporter viruses will contribute to the assessment of viral replication and proliferation, tracking and elucidating of alphavirus-host interactions. In addition, they will help in the screening of potential antiviral compounds.


Assuntos
Alphavirus , Culicidae , Animais , Camundongos , Alphavirus/genética , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/veterinária , Replicação Viral
12.
Antiviral Res ; 217: 105620, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169224

RESUMO

Diseases caused by new viruses cost thousands if not millions of human lives and trillions of dollars. We have identified, collected, curated, and integrated all chemogenomics data from ChEMBL for 13 emerging viruses that hold the greatest potential threat to global human health. By identifying and solving several challenges related to data annotation accuracy, we developed a highly curated and thoroughly annotated database of compounds tested in both phenotypic and target-based assays for these viruses that we dubbed SMACC (Small Molecule Antiviral Compound Collection). The pilot version of the SMACC database contains over 32,500 entries for 13 viruses. By analyzing data in SMACC, we have identified ∼50 compounds with polyviral inhibition profile, mostly covering flavi- and coronaviruses. The SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel BSA agents in preparation for future viral outbreaks. SMACC is publicly available at https://smacc.mml.unc.edu.


Assuntos
Infecções por Coronavirus , Vírus , Humanos , Antivirais/farmacologia , Vírus/genética , Bases de Dados Factuais
13.
Front Mol Biosci ; 9: 875424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465554

RESUMO

According to the World Health Organisation (WHO), as of week 23 of 2022, there were more than 1,311 cases of dengue in Malaysia, with 13 deaths reported. Furthermore, there was an increase of 65.7% during the same period in 2021. Despite the increase in cumulative dengue incidence, there is no effective antiviral drug available for dengue treatment. This work aimed to evaluate several nitro-benzylidene phenazine compounds, especially those that contain 4-hydroxy-3,5-bis((2-(4-nitrophenyl)hydrazinylidene)-methyl)benzoate through pharmacophore queries selection method as potential dengue virus 2 (DENV2) NS2B-NS3 protease inhibitors. Herein, molecular docking was employed to correlate the energies of selected hits' free binding and their binding affinities. Pan assay interference compounds (PAINS) filter was also adopted to identify and assess the drug-likeness, toxicity, mutagenicity potentials, and pharmacokinetic profiles to select hit compounds that can be considered as lead DENV2 NS2B-NS3 protease inhibitors. Molecular dynamics assessment of two nitro-benzylidene phenazine derivatives bearing dinitro and hydroxy groups at the benzylidene ring showed their stability at the main binding pocket of DENV2 protease, where their MM-PBSA binding energies were between -22.53 and -17.01 kcal/mol. This work reports those two nitro-benzylidene phenazine derivatives as hits with 52-55% efficiency as antiviral candidates. Therefore, further optimisation is required to minimise the lead compounds' toxicity and mutagenicity.

14.
Front Neurosci ; 16: 917867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958991

RESUMO

Background: Recent studies have reported that pulmo-neurotropic viruses can cause systemic invasion leading to acute respiratory failure and neuroinfection. The tetracycline class of secondary metabolites of microorganisms is effective against several migrating neurotropic viral disorders, as Japanese-Encephalitis (JE), Severe-Acute-Respiratory-Syndrome Coronavirus-2 (SARS-COV2), Human-Immunodeficiency-Virus (HIV), and Simian-Immunodeficiency-Virus (SIV). Another microbial secondary metabolite, cephalosporin, can be used for anti-viral combination therapy. However, a substantial public health debacle is viral resistance to such antibiotics, and, thus, one needs to explore the antiviral efficiency of other secondary metabolites, as phytochemicals. Hence, here, we investigate phytochemicals like podophyllotoxin, chlorogenic acid, naringenin, and quercetin for therapeutic efficiency in neurotropic viral infections. Methods: To investigate the possibility of the afferent neural pathway of migrating virus in man, MRI scanning was performed on human subjects, whereby the connections between cranial nerves and the brain-stem/limbic-region were assessed by fiber-tractography. Moreover, human clinical-trial assessment (n = 140, p = 0.028) was done for formulating a quantitative model of antiviral pharmacological intervention. Furthermore, docking studies were performed to identify the binding affinity of phytochemicals toward antiviral targets as (i) host receptor [Angiotensin-converting Enzyme-2], (ii) main protease of SARS-COV2 virus (iii) NS3-Helicase/Nucleoside triphosphatase of Japanese-encephalitis-virus, and the affinities were compared to standard tetracycline and cephalosporin antibiotics. Then, network pharmacology analysis was utilized to identify the possible mechanism of action of those phytochemicals. Results: Human MRI-tractography analysis showed fiber connectivity, as: (a) Path-1: From the olfactory nerve to the limbic region (2) Path-2: From the peripheral glossopharyngeal nerve and vagus nerves to the midbrain-respiratory-center. Docking studies revealed comparable binding affinity of phytochemicals, tetracycline, and cephalosporin antibiotics toward both (a) virus receptors, (b) host cell receptors where virus-receptor binds. The phytochemicals effectively countered the cytokine storm-induced neuroinflammation, a critical pathogenic pathway. We also found that a systems-biology-based double-hit mathematical bi-exponential model accounts for patient survival-curve under antiviral treatment, thus furnishing a quantitative-clinical framework of secondary metabolite action on virus and host cells. Conclusion: Due to the current viral resistance to antibiotics, we identified novel phytochemicals that can have clinical therapeutic application to neurotropic virus infection. Based on human MRI scanning and clinical-trial analysis, we demarcated the anatomical pathway and systems-biology-based quantitative formulation of the mechanism of antiviral action.

15.
Front Chem ; 10: 876212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559224

RESUMO

The emergence of SARS-CoV-2 causing the COVID-19 pandemic, has highlighted how a combination of urgency, collaboration and building on existing research can enable rapid vaccine development to fight disease outbreaks. However, even countries with high vaccination rates still see surges in case numbers and high numbers of hospitalized patients. The development of antiviral treatments hence remains a top priority in preventing hospitalization and death of COVID-19 patients, and eventually bringing an end to the SARS-CoV-2 pandemic. The SARS-CoV-2 proteome contains several essential enzymatic activities embedded within its non-structural proteins (nsps). We here focus on nsp3, that harbours an essential papain-like protease (PLpro) domain responsible for cleaving the viral polyprotein as part of viral processing. Moreover, nsp3/PLpro also cleaves ubiquitin and ISG15 modifications within the host cell, derailing innate immune responses. Small molecule inhibition of the PLpro protease domain significantly reduces viral loads in SARS-CoV-2 infection models, suggesting that PLpro is an excellent drug target for next generation antivirals. In this review we discuss the conserved structure and function of PLpro and the ongoing efforts to design small molecule PLpro inhibitors that exploit this knowledge. We first discuss the many drug repurposing attempts, concluding that it is unlikely that PLpro-targeting drugs already exist. We next discuss the wealth of structural information on SARS-CoV-2 PLpro inhibition, for which there are now ∼30 distinct crystal structures with small molecule inhibitors bound in a surprising number of distinct crystallographic settings. We focus on optimisation of an existing compound class, based on SARS-CoV PLpro inhibitor GRL-0617, and recapitulate how new GRL-0617 derivatives exploit different features of PLpro, to overcome some compound liabilities.

16.
J Biomol Struct Dyn ; 39(7): 2502-2511, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32308149

RESUMO

Hepatitis B virus (HBV), a small enveloped DNA virus, attacks the human liver causing both acute and chronic diseases. Current therapeutic drugs use the nucleos(t)ide analogues (NAs) as a competitive inhibitor against HBV reverse transcriptase (HBV-RT), an essential enzyme pivotally involved in viral replication. Unfortunately, this treatment still causes the development of resistant variants of HBV against NAs. As HBV-RT is homologous to the human immunodeficiency virus reverse transcriptase (HIV-RT), it is reasonable to treat HBV-RT with anti-HIV drugs. In the present study, we aimed to investigate the structural dynamics and susceptibility of the known anti-HIV drugs (stavudine [d4T], didanosine [DDI], and zidovudine [ZDV]) against HBV-RT enzyme in comparison to the anti-HBV drug lamivudine (3TC) and deoxythymidine triphosphate (dTTP) substrate using several computational approaches. The ΔGbindresidue calculations revealed that seven polar residues (K32, R41, D83, S85, D205, N236, and K239) and three hydrophobic residues (A86, A87, and F88) of HBV-RT as well as the adjacent DNA strands play an important role in the ligand binding. In addition, the H-bond pattern of d4T is similar to that of 3TC, especially at the residues A86 and A87. Such interactions promote the favorable conformation of ligand in the HBV-RT binding pocket, while the several different conformations of ligand are found in the unbound state. The predicted binding free energy results based on QM/MM-GBSA and MM/GB(PB)SA methods suggested that the susceptibility towards HBV-RT of d4T and ZDV is higher than that of 3TC and dTTP. Altogether, this work sheds light on the potentiality of d4T and ZDV as a promising drug for HBV-infected patients harboring 3TC resistance.Communicated by Ramaswamy H. Sarma.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Infecções por HIV/tratamento farmacológico , Vírus da Hepatite B , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Estavudina/uso terapêutico , Zidovudina
17.
Biocatal Agric Biotechnol ; 31: 101890, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33520034

RESUMO

There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of \suitable candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of phytomedicine against COVID-19. The main aim is to review the mechanistic aspects of most important phytochemical compounds that have showed potential against coronaviruses. Glycyrrhizin from the roots of Glycyrrhiza glabra has shown promising potential against the previously epidemic coronavirus, SARS-CoV. Other important plants such as Artemisia annua, Isatis indigotica, Lindera aggregate, Pelargonium sidoides, and Glychirrhiza spp. have been employed against SARS-CoV. Active ingredients (e.g. emodin, reserpine, aescin, myricetin, scutellarin, apigenin, luteolin, and betulonic acid) have shown promising results against the coronaviruses. Phytochemicals have demonstrated activity against the coronaviruses through mechanisms such as viral entry inhibition, inhibition of replication enzymes and virus release blockage. However, compared to synthetic drugs, phytomedicine are mechanistically less understood and should be properly evaluated before application. Nonetheless, phytochemicals reduce the tedious job of drug discovery and provide a less time-consuming alternative for drug testing. Therefore, along with other drugs currently tested against COVID-19, plant-based drugs should be included for speedy development of COVID-19 treatment.

18.
Front Pharmacol ; 12: 732891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819855

RESUMO

Currently, viral infection is the most serious health issue which causing unexpected higher rate of death globally. Many viruses are not yet curable, such as corona virus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), hepatitis virus, human papilloma virus and so others. Furthermore, the toxicities and ineffective responses to resistant strains of synthetic antiviral drugs have reinforced the search of effective and alternative treatment options, such as plant-derived antiviral drug molecules. Therefore, in the present review, an attempt has been taken to summarize the medicinal plants reported for exhibiting antiviral activities available in Bangladesh along with discussing the mechanistic insights into their bioactive components against three most hazardous viruses, namely SARS-CoV-2, HIV, and HBV. The review covers 46 medicinal plants with antiviral activity from 25 families. Among the reported 79 bioactive compounds having antiviral activities isolated from these plants, about 37 of them have been reported for significant activities against varieties of viruses. Hesperidin, apigenin, luteolin, seselin, 6-gingerol, humulene epoxide, quercetin, kaempferol, curcumin, and epigallocatechin-3-gallate (EGCG) have been reported to inhibit multiple molecular targets of SARS-CoV-2 viral replication in a number of in silico investigations. Besides, numerous in silico, in vitro, and in vivo bioassays have been demonstrated that EGCG, anolignan-A, and B, ajoene, curcumin, and oleanolic acid exhibit anti-HIV activity while piperine, ursolic acid, oleanolic acid, (+)-cycloolivil-4'-O-ß-d-glucopyranoside, quercetin, EGCG, kaempferol, aloin, apigenin, rosmarinic acid, andrographolide, and hesperidin possess anti-HBV activity. Thus, the antiviral medicinal plants and the isolated bioactive compounds may be considered for further advanced investigations with the aim of the development of effective and affordable antiviral drugs.

19.
Virol Sin ; 36(3): 476-489, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33231855

RESUMO

Zika virus (ZIKV) is associated with severe birth defects and Guillain-Barré syndrome and no approved vaccines or specific therapies to combat ZIKV infection are currently available. To accelerate anti-ZIKV therapeutics research, we developed a stable ZIKV GFP-reporter virus system with considerably improved GFP visibility and stability. In this system a BHK-21 cell line expressing DC-SIGNR was established to facilitate the proliferation of GFP-reporter ZIKV. Using this reporter virus system, we established a high-throughput screening assay and screened a selected plant-sourced compounds library for their ability to block ZIKV infection. More than 31 out of 974 tested compounds effectively decreased ZIKV reporter infection. Four selected compounds, homoharringtonine (HHT), bruceine D (BD), dihydroartemisinin (DHA) and digitonin (DGT), were further validated to inhibit wild-type ZIKV infection in cells of BHK-21 and human cell line A549. The FDA-approved chronic myeloid leukemia treatment drug HHT and BD were identified as broad-spectrum flavivirus inhibitors. DHA, another FDA-approved antimalarial drug effectively inhibited ZIKV infection in BHK-21 cells. HHT, BD and DHA inhibited ZIKV infection at a post-entry stage. Digitonin was found to have inhibitory activity in the early stage of viral infection. Our research provides an efficient high-throughput screening assay for ZIKV inhibitors. The active compounds identified in this study represent potential therapies for the treatment of ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala , Humanos , Células Vero , Replicação Viral/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico
20.
Antiviral Res ; 168: 82-90, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150677

RESUMO

Mayaro virus (MAYV) is a neglected mosquito-borne alphavirus that causes illness similar to Chikungunya (CHIKV), Dengue (DENV) and Zika virus (ZIKV). Currently, there is no specific treatment or vaccine against MAYV infection. To develop an efficient antiviral screening assay for MAYV, we constructed the infectious clones of MAYV strain BeAr 20290 and its eGFP reporter virus. The reporter virus exhibited high replication capacity indistinguishable with the wild type MAYV, and was genetically stable within at least five rounds of passages in BHK-21 cell. The expression of eGFP correlated well with the viral replication. Using the known inhibitor ribavirin, we confirmed that the MAYV-eGFP reporter virus could be used for antiviral screening to identify the specific inhibitors against MAYV. Using the MAYV-eGFP based antiviral assay, we found that the compound 6-Azauridine which had antiviral activity against CHIKV and SFV, showed a significant inhibitory effect on MAYV replication.


Assuntos
Alphavirus/efeitos dos fármacos , Alphavirus/genética , Antivirais/farmacologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Alphavirus/crescimento & desenvolvimento , Animais , Linhagem Celular , Cricetinae , Culicidae , Avaliação Pré-Clínica de Medicamentos , Genoma Viral/genética , Instabilidade Genômica , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA