Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biol Chem ; 295(33): 11643-11655, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571878

RESUMO

In humans, mutations in genes encoding homologs of the DNA mismatch repair endonuclease MutL cause a hereditary cancer that is known as Lynch syndrome. Here, we determined the crystal structures of the N-terminal domain (NTD) of MutL from the thermophilic eubacterium Aquifex aeolicus (aqMutL) complexed with ATP analogs at 1.69-1.73 Å. The structures revealed significant structural similarities to those of a human MutL homolog, postmeiotic segregation increased 2 (PMS2). We introduced five Lynch syndrome-associated mutations clinically found in human PMS2 into the aqMutL NTD and investigated the protein stability, ATPase activity, and DNA-binding ability of these protein variants. Among the mutations studied, the most unexpected results were obtained for the residue Ser34. Ser34 (Ser46 in PMS2) is located at a previously identified Bergerat ATP-binding fold. We found that the S34I aqMutL NTD retains ATPase and DNA-binding activities. Interestingly, CD spectrometry and trypsin-limited proteolysis indicated the disruption of a secondary structure element of the S34I NTD, destabilizing the overall structure of the aqMutL NTD. In agreement with this, the recombinant human PMS2 S46I NTD was easily digested in the host Escherichia coli cells. Moreover, other mutations resulted in reduced DNA-binding or ATPase activity. In summary, using the thermostable aqMutL protein as a model molecule, we have experimentally determined the effects of the mutations on MutL endonuclease; we discuss the pathological effects of the corresponding mutations in human PMS2.


Assuntos
Proteínas de Bactérias/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas MutL/genética , Mutação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aquifex/química , Aquifex/genética , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Reparo de Erro de Pareamento de DNA , Humanos , Modelos Moleculares , Proteínas MutL/química , Conformação Proteica , Domínios Proteicos
2.
Biochem Cell Biol ; 99(4): 499-507, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357813

RESUMO

Adenylate kinases (AK) play a pivotal role in the regulation of cellular energy. The aim of our work was to achieve the overproduction and purification of AKs from two groups of bacteria and to determine, for the first time, the comprehensive biochemical and kinetic properties of adenylate kinase from Gram-negative Aquifex aeolicus (AKaq) and Gram-positive Geobacillus stearothermophilus (AKst). Therefore we determined KM and Vmax values, and the effects of temperature, pH, metal ions, donors of the phosphate groups and inhibitor Ap5A for both thermophilic AKs. The kinetic studies indicate that both AKs exhibit significantly higher affinity for substrates with the pyrophosphate group than for adenosine monophosphate. AK activation by Mg2+ and Mn2+ revealed that both ions are efficient in the synthesis of adenosine diphosphate and adenosine triphosphate; however, Mn2+ ions at 0.2-2.0 mmol/L concentration were more efficient in the activation of the ATP synthesis than Mg2+ ions. Our research demonstrates that zinc ions inhibit the activity of enzymes in both directions, while Ap5A at a concentration of 10 µmol/L and 50 µmol/L inhibited both enzymes with a different efficiency. Sigmoid-like kinetics were detected at high ATP concentrations not balanced by Mg2+, suggesting the allosteric effect of ATP for both bacterial AKs.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Difosfatos/metabolismo , Geobacillus stearothermophilus/enzimologia , Zinco/metabolismo , Adenilato Quinase/química , Aquifex/enzimologia , Cinética
3.
Microbiology (Reading) ; 167(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350903

RESUMO

The bacterium 'Aquifex aeolicus' is the model organism for the deeply rooted phylum Aquificae. This 'water-maker' is an H2-oxidizing microaerophile that flourishes in extremely hot marine habitats, and it also thrives on the sulphur compounds commonly found in volcanic environments. 'A. aeolicus' has hyper-stable proteins and a fully sequenced genome, with some of its essential metabolic pathways deciphered (including energy conservation). Many of its proteins have also been characterized (especially structurally), including many of the enzymes involved in replication, transcription, RNA processing and cell envelope biosynthesis. Enzymes that are of promise for biotechnological applications have been widely investigated in this species. 'A. aeolicus' has also added to our understanding of the origins of life and evolution.


Assuntos
Gases/metabolismo , Compostos Inorgânicos/metabolismo , Aquifex/classificação , Aquifex/genética , Aquifex/isolamento & purificação , Aquifex/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Calor Extremo , Hidrogênio/metabolismo , Oxirredução , Água do Mar/química , Água do Mar/microbiologia
4.
Proc Natl Acad Sci U S A ; 114(42): 11121-11126, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29073018

RESUMO

RNase P is an essential tRNA-processing enzyme in all domains of life. We identified an unknown type of protein-only RNase P in the hyperthermophilic bacterium Aquifex aeolicus: Without an RNA subunit and the smallest of its kind, the 23-kDa polypeptide comprises a metallonuclease domain only. The protein has RNase P activity in vitro and rescued the growth of Escherichia coli and Saccharomyces cerevisiae strains with inactivations of their more complex and larger endogenous ribonucleoprotein RNase P. Homologs of Aquifex RNase P (HARP) were identified in many Archaea and some Bacteria, of which all Archaea and most Bacteria also encode an RNA-based RNase P; activity of both RNase P forms from the same bacterium or archaeon could be verified in two selected cases. Bioinformatic analyses suggest that A. aeolicus and related Aquificaceae likely acquired HARP by horizontal gene transfer from an archaeon.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Ribonuclease P/metabolismo , Archaea/genética , Bactérias/genética , Transferência Genética Horizontal , Filogenia , Ribonuclease P/genética , Ribonuclease P/isolamento & purificação
5.
Biochim Biophys Acta Bioenerg ; 1859(5): 366-373, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501404

RESUMO

The NADH:ubiquinone oxidoreductase (complex I) is the first enzyme of the respiratory chain and the entry point for most electrons. Generally, the bacterial complex I consists of 14 core subunits, homologues of which are also found in complex I of mitochondria. In complex I preparations from the hyperthermophilic bacterium Aquifex aeolicus we have identified 20 partially homologous subunits by combining MALDI-TOF and LILBID mass spectrometry methods. The subunits could be assigned to two different complex I isoforms, named NQOR1 and NQOR2. NQOR1 consists of subunits NuoA2, NuoB, NuoD2, NuoE, NuoF, NuoG, NuoI1, NuoH1, NuoJ1, NuoK1, NuoL1, NuoM1 and NuoN1, with an entire mass of 504.17 kDa. NQOR2 comprises subunits NuoA1, NuoB, NuoD1, NuoE, NuoF, NuoG, NuoH2, NuoI2, NuoJ1, NuoK1, NuoL2, NuoM2 and NuoN2, with a total mass of 523.99 kDa. Three Fe-S clusters could be identified by EPR spectroscopy in a preparation containing predominantly NQOR1. These were tentatively assigned to a binuclear center N1, and two tetranuclear centers, N2 and N4. The redox midpoint potentials of N1 and N2 are -273 mV and -184 mV, respectively. Specific activity assays indicated that NQOR1 from cells grown under low concentrations of oxygen was the more active form. Increasing the concentration of oxygen in the bacterial cultures induced formation of NQOR2 showing the lower specific activity.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/sangue , Complexo I de Transporte de Elétrons/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
IUCrJ ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965901

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Šor better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Šmap of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Šfor a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field.

7.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38515312

RESUMO

Proteins from hyperthermophiles often contain a large number of ionic interactions. Close examination of the previously determined crystal structure of the ATPase domain of MutL from a hyperthermophile, Aquifex aeolicus, revealed that the domain contains a continuous ion-pair/hydrogen-bond network consisting of 11 charged amino acid residues on a ß-sheet. Mutations were introduced to disrupt the network, showing that the more extensively the network was disrupted, the greater the thermostability of the protein was decreased. Based on urea denaturation analysis, a thermodynamic parameter, energy for the conformational stability, was evaluated, which indicated that amino acid residues in the network contributed additively to the protein stability. A continuous network rather than a cluster of isolated interactions would pay less entropic penalty upon fixing the side chains to make the same number of ion pairs/hydrogen bonds, which might contribute more favorably to the structural formation of thermostable proteins.


Assuntos
Bactérias , Dobramento de Proteína , Ligação de Hidrogênio , Bactérias/genética , Íons , Adenosina Trifosfatases/genética , Aminoácidos , Aquifex
8.
Protein Sci ; 33(6): e5014, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747384

RESUMO

A heterodisulfide reductase-like complex (sHdr) and novel lipoate-binding proteins (LbpAs) are central players of a wide-spread pathway of dissimilatory sulfur oxidation. Bioinformatic analysis demonstrate that the cytoplasmic sHdr-LbpA systems are always accompanied by sets of sulfur transferases (DsrE proteins, TusA, and rhodaneses). The exact composition of these sets may vary depending on the organism and sHdr system type. To enable generalizations, we studied model sulfur oxidizers from distant bacterial phyla, that is, Aquificota and Pseudomonadota. DsrE3C of the chemoorganotrophic Alphaproteobacterium Hyphomicrobium denitrificans and DsrE3B from the Gammaproteobacteria Thioalkalivibrio sp. K90mix, an obligate chemolithotroph, and Thiorhodospira sibirica, an obligate photolithotroph, are homotrimers that donate sulfur to TusA. Additionally, the hyphomicrobial rhodanese-like protein Rhd442 exchanges sulfur with both TusA and DsrE3C. The latter is essential for sulfur oxidation in Hm. denitrificans. TusA from Aquifex aeolicus (AqTusA) interacts physiologically with AqDsrE, AqLbpA, and AqsHdr proteins. This is particularly significant as it establishes a direct link between sulfur transferases and the sHdr-LbpA complex that oxidizes sulfane sulfur to sulfite. In vivo, it is unlikely that there is a strict unidirectional transfer between the sulfur-binding enzymes studied. Rather, the sulfur transferases form a network, each with a pool of bound sulfur. Sulfur flux can then be shifted in one direction or the other depending on metabolic requirements. A single pair of sulfur-binding proteins with a preferred transfer direction, such as a DsrE3-type protein towards TusA, may be sufficient to push sulfur into the sink where it is further metabolized or needed.


Assuntos
Proteínas de Bactérias , Oxirredução , Oxirredutases , Enxofre , Sulfurtransferases , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Sulfurtransferases/química , Sulfurtransferases/genética , Oxirredutases/metabolismo , Oxirredutases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
9.
Elife ; 122024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271216

RESUMO

The neurotransmitter:sodium symporters (NSSs) are secondary active transporters that couple the reuptake of substrate to the symport of one or two sodium ions. One bound Na+ (Na1) contributes to the substrate binding, while the other Na+ (Na2) is thought to be involved in the conformational transition of the NSS. Two NSS members, the serotonin transporter (SERT) and the Drosophila dopamine transporter (dDAT), also couple substrate uptake to the antiport of K+ by a largely undefined mechanism. We have previously shown that the bacterial NSS homologue, LeuT, also binds K+, and could therefore serve as a model protein for the exploration of K+ binding in NSS proteins. Here, we characterize the impact of K+ on substrate affinity and transport as well as on LeuT conformational equilibrium states. Both radioligand binding assays and transition metal ion FRET (tmFRET) yielded similar K+ affinities for LeuT. K+ binding was specific and saturable. LeuT reconstituted into proteoliposomes showed that intra-vesicular K+ dose-dependently increased the transport velocity of [3H]alanine, whereas extra-vesicular K+ had no apparent effect. K+ binding induced a LeuT conformation distinct from the Na+- and substrate-bound conformation. Conservative mutations of the Na1 site residues affected the binding of Na+ and K+ to different degrees. The Na1 site mutation N27Q caused a >10-fold decrease in K+ affinity but at the same time a ~3-fold increase in Na+ affinity. Together, the results suggest that K+ binding to LeuT modulates substrate transport and that the K+ affinity and selectivity for LeuT is sensitive to mutations in the Na1 site, pointing toward the Na1 site as a candidate site for facilitating the interaction with K+ in some NSSs.


Assuntos
Sódio , Simportadores , Sódio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Simportadores/metabolismo , Sítios de Ligação , Neurotransmissores
10.
Artigo em Inglês | MEDLINE | ID: mdl-24316836

RESUMO

One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Bactérias/química , Proteínas de Ligação a DNA/química , RNA Polimerase Sigma 54/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Bactérias/genética , Bactérias/metabolismo , Berílio/química , Cristalização , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluoretos/química , Expressão Gênica , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
11.
Elife ; 102021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180399

RESUMO

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.


Assuntos
Halorhodospira halophila/genética , Ribonuclease P/genética , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Microscopia Crioeletrônica , Halorhodospira halophila/metabolismo , Ribonuclease P/metabolismo
12.
Biochim Biophys Acta Bioenerg ; 1861(11): 148279, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735861

RESUMO

The microaerophilic bacterium Aquifex aeolicus is a chemolitoautotroph that uses sulfur compounds as electron sources. The model of oxidation of the energetic sulfur compounds in this bacterium predicts that sulfite would probably be a metabolic intermediate released in the cytoplasm. In this work, we purified and characterized a membrane-bound sulfite dehydrogenase, identified as an SoeABC enzyme, that was previously described as a sulfur reductase. It is a member of the DMSO-reductase family of molybdenum enzymes. This type of enzyme was identified a few years ago but never purified, and biochemical data and kinetic properties were completely lacking. An enzyme catalyzing sulfite oxidation using Nitro-blue tetrazolium as artificial electron acceptor was extracted from the membrane fraction of Aquifex aeolicus. The purified enzyme is a dimer of trimer (αßγ)2 of about 390 kDa. The KM for sulfite and kcat values were 34 µM and 567 s-1 respectively, at pH 8.3 and 55 °C. We furthermore showed that SoeABC reduces a UQ10 analogue, the decyl-ubiquinone, as well, with a KM of 2.6 µM and a kcat of 52.9 s-1. It seems to specifically oxidize sulfite but can work in the reverse direction, reduction of sulfur or tetrathionate, using reduced methyl viologen as electron donor. The close phylogenetic relationship of Soe with sulfur and tetrathionate reductases that we established, perfectly explains this enzymatic ability, although its bidirectionality in vivo still needs to be clarified. Oxygen-consumption measurements confirmed that electrons generated by sulfite oxidation in the cytoplasm enter the respiratory chain at the level of quinones.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Molibdênio/química , Quinonas/química , Sulfito Desidrogenase/metabolismo , Sulfitos/química , Aquifex/enzimologia , Aquifex/genética , Aquifex/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Consumo de Oxigênio , Filogenia , Sulfito Desidrogenase/genética
13.
mBio ; 11(3)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605991

RESUMO

The integral membrane protein heme A synthase (HAS) catalyzes the biosynthesis of heme A, which is a prerequisite for cellular respiration in a wide range of aerobic organisms. Previous studies have revealed that HAS can form homo-oligomeric complexes, and this oligomerization appears to be evolutionarily conserved among prokaryotes and eukaryotes and is shown to be essential for the biological function of eukaryotic HAS. Despite its importance, little is known about the detailed structural properties of HAS oligomers. Here, we aimed to address this critical issue by analyzing the oligomeric state of HAS from Aquifex aeolicus (AaHAS) using a combination of techniques, including size exclusion chromatography coupled with multiangle light scattering (SEC-MALS), cross-linking, laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS), and single-particle electron cryomicroscopy (cryo-EM). Our results show that HAS forms a thermostable trimeric complex. A cryo-EM density map provides information on the oligomerization interface of the AaHAS trimer. These results provide structural insights into HAS multimerization and expand our knowledge of this important enzyme.IMPORTANCE Heme A is a vital redox cofactor unique for the terminal cytochrome c oxidase in mitochondria and many microorganisms. It plays a key role in oxygen reduction by serving as an electron carrier and as the oxygen-binding site. Heme A is synthesized from heme O by an integral membrane protein, heme A synthase (HAS). Defects in HAS impair cellular respiration and have been linked to various human diseases, e.g., fatal infantile hypertrophic cardiomyopathy and Leigh syndrome. HAS exists as a stable oligomeric complex, and studies have shown that oligomerization of eukaryotic HAS is necessary for its proper function. However, the molecular architecture of the HAS oligomeric complex has remained uncharacterized. The present study shows that HAS forms trimers and reveals how the oligomeric arrangement contributes to the complex stability and flexibility, enabling HAS to perform its catalytic function effectively. This work provides the basic understanding for future studies on heme A biosynthesis.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos b/química , Proteínas de Membrana/química , Aquifex/enzimologia , Proteínas de Bactérias/isolamento & purificação , Grupo dos Citocromos b/isolamento & purificação , Heme/análogos & derivados , Heme/biossíntese , Proteínas de Membrana/isolamento & purificação , Modelos Moleculares , Oxigênio/metabolismo , Multimerização Proteica
14.
J Struct Biol X ; 4: 100030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775998

RESUMO

Sulfur oxygenase reductases (SORs) are present in thermophilic and mesophilic archaea and bacteria, and catalyze oxygen-dependent oxygenation and disproportionation of elemental sulfur. SOR has a hollow, spherical homo-24-mer structure and reactions take place at active sites inside the chamber. The crystal structures of SORs from Acidianus species have been reported. However, the states of the active site components (mononuclear iron and cysteines) and the entry and exit paths of the substrate and products are still in dispute. Here, we report the biochemical and structural characterizations of SORs from the thermoacidophilic archaeon Sulfurisphaera tokodaii (StSOR) and present high-resolution structures determined by X-ray crystallography and cryogenic electron microscopy (cryo-EM). The crystal structure of StSOR was determined at 1.73 Å resolution. At the catalytic center, iron is ligated to His86, His90, Glu114, and two water molecules. Three conserved cysteines in the cavity are located 9.5-13 Å from the iron and were observed as free thiol forms. A mutational analysis indicated that the iron and one of the cysteines (Cys31) were essential for both activities. The cryo-EM structure was determined at 2.24 Å resolution using an instrument operating at 200 kV. The two structures determined by different methodologies showed similar main chain traces, but the maps exhibited different features at catalytically important components. A possible role of StSOR in the sulfur metabolism of S. tokodaii (an obligate aerobe) is discussed based on this study. Given the high resolution achieved in this study, StSOR was shown to be a good benchmark sample for cryo-EM.

15.
FEBS J ; 286(6): 1204-1213, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30657257

RESUMO

Dihydroorotase (DHOase) is involved in the de novo synthesis of pyrimidine in virtually all organisms, and it is usually associated with two other enzymes found in this biosynthetic pathway, carbamylphosphate synthetase and/or aspartate transcarbamylase (ATCase). In the hyperthermophilic bacterium Aquifex aeolicus, ATCase and DHOase are noncovalently associated. Upon dissociation, ATCase keeps its activity entirely while DHOase is totally inactivated. It was previously shown that high pressure fully restores the activity of this isolated DHOase. On the basis of kinetic studies, site-directed mutagenesis and the use of peptides mimicking loop A, a loop that appears to block access to the active site, was proposed that this pressure-induced reactivation was due to the decrease in the volume of the system, -ΔV, resulting from the disruption of known ionic interactions between the loop and the main part of the protein. In this study, this interpretation is more precisely demonstrated by the determination of the crystallographic structure of isolated DHOase under pressure. In addition to the loop displacements, pressure induces a discrete rearrangement of the catalytic site aspartate 305, an effect that might additionally contribute to the reactivation of this enzyme.


Assuntos
Ácido Aspártico/metabolismo , Bactérias/enzimologia , Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Zinco/metabolismo , Aquifex , Ácido Aspártico/química , Ácido Aspártico/genética , Domínio Catalítico , Cristalografia , Di-Hidro-Orotase/genética , Mutagênese Sítio-Dirigida , Mutação , Pressão , Conformação Proteica
16.
Acta Crystallogr D Struct Biol ; 73(Pt 4): 294-315, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375142

RESUMO

The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homolog has been identified in the phylogenetically deep-branching thermophile Aquifex aeolicus (Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore, Aae Hfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures of Aae Hfq were determined in space groups P1 and P6, both to 1.5 Šresolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U6 RNA reveals that the outer rim of the Aae Hfq hexamer features a well defined binding pocket that is selective for uracil. This Aae Hfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Sequência de Aminoácidos , Bactérias/química , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Fator Proteico 1 do Hospedeiro/química , Modelos Moleculares , Ligação Proteica , RNA Nuclear Pequeno/química , Alinhamento de Sequência
17.
Protein Sci ; 26(2): 208-217, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27750371

RESUMO

We determined the NMR structure of a highly aromatic (13%) protein of unknown function, Aq1974 from Aquifex aeolicus (PDB ID: 5SYQ). The unusual sequence of this protein has a tryptophan content five times the normal (six tryptophan residues of 114 or 5.2% while the average tryptophan content is 1.0%) with the tryptophans occurring in a WXW motif. It has no detectable sequence homology with known protein structures. Although its NMR spectrum suggested that the protein was rich in ß-sheet, upon resonance assignment and solution structure determination, the protein was found to be primarily α-helical with a small two-stranded ß-sheet with a novel fold that we have termed an Aromatic Claw. As this fold was previously unknown and the sequence unique, we submitted the sequence to CASP10 as a target for blind structural prediction. At the end of the competition, the sequence was classified a hard template based model; the structural relationship between the template and the experimental structure was small and the predictions all failed to predict the structure. CSRosetta was found to predict the secondary structure and its packing; however, it was found that there was little correlation between CSRosetta score and the RMSD between the CSRosetta structure and the NMR determined one. This work demonstrates that even in relatively small proteins, we do not yet have the capacity to accurately predict the fold for all primary sequences. The experimental discovery of new folds helps guide the improvement of structural prediction methods.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Dobramento de Proteína , Triptofano/química , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
18.
Elife ; 62017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117663

RESUMO

The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been heavily debated. Here we used solid state NMR to specifically characterize the bound leucine ligand and probe the number of binding sites in LeuT. We were able to produce high-quality NMR spectra of substrate bound to microcrystalline LeuT samples and identify one set of sodium-dependent substrate-specific chemical shifts. Furthermore, our data show that the binding site mutants F253A and L400S, which probe the major S1 binding site and the proposed S2 binding site, respectively, retain sodium-dependent substrate binding in the S1 site similar to the wild-type protein. We conclude that under our experimental conditions there is only one detectable leucine molecule bound to LeuT.


Assuntos
Leucina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Bactérias/enzimologia , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Ligação Proteica
19.
FEMS Microbiol Lett ; 363(15)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27284018

RESUMO

The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus, a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (∼240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus, with Hdr predicted to generate sulfite.


Assuntos
Bactérias/metabolismo , Oxirredutases/metabolismo , Enxofre/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Crescimento Quimioautotrófico , Proteínas de Membrana/metabolismo , Oxirredução , Oxirredutases/química
20.
Biochimie ; 117: 72-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25771336

RESUMO

Bacterial 6S RNAs competitively inhibit binding of RNA polymerase (RNAP) holoenzymes to DNA promoters, thereby globally regulating transcription. RNAP uses 6S RNA itself as a template to synthesize short transcripts, termed pRNAs (product RNAs). Longer pRNAs (approx. ≥ 10 nt) rearrange the 6S RNA structure and thereby disrupt the 6S RNA:RNAP complex, which enables the enzyme to resume transcription at DNA promoters. We studied 6S RNA of the hyperthermophilic bacterium Aquifex aeolicus, representing the thermodynamically most stable 6S RNA known so far. Applying structure probing and NMR, we show that the RNA adopts the canonical rod-shaped 6S RNA architecture with little structure formation in the central bulge (CB) even at moderate temperatures (≤37 °C). 6S RNA:pRNA complex formation triggers an internal structure rearrangement of 6S RNA, i.e. formation of a so-called central bulge collapse (CBC) helix. The persistence of several characteristic NMR imino proton resonances upon pRNA annealing demonstrates that defined helical segments on both sides of the CB are retained in the pRNA-bound state, thus representing a basic framework of the RNA's architecture. RNA-seq analyses revealed pRNA synthesis from 6S RNA in A. aeolicus, identifying 9 to ∼17-mers as the major length species. A. aeolicus 6S RNA can also serve as a template for in vitro pRNA synthesis by RNAP from the mesophile Bacillus subtilis. Binding of a synthetic pRNA to A. aeolicus 6S RNA blocks formation of 6S RNA:RNAP complexes. Our findings indicate that A. aeolicus 6S RNA function in its hyperthermophilic host is mechanistically identical to that of other bacterial 6S RNAs. The use of artificial pRNA variants, designed to disrupt helix P2 from the 3'-CB instead of the 5'-CB but preventing formation of the CBC helix, indicated that the mechanism of pRNA-induced RNAP release has been evolutionarily optimized for transcriptional pRNA initiation in the 5'-CB.


Assuntos
Bactérias/genética , Temperatura Alta , RNA Bacteriano/genética , RNA não Traduzido/genética , Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Especificidade por Substrato , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA