Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 77(2): 228-240.e7, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31733992

RESUMO

Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.


Assuntos
Autofagia/fisiologia , Proteína Quinase CDC2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitose/fisiologia , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
2.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39025789

RESUMO

Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.


Assuntos
Citometria de Fluxo , Peroxissomos , Saccharomycetales , Peroxissomos/metabolismo , Peroxissomos/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Ensaios de Triagem em Larga Escala , Autofagia , Vacúolos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Macroautofagia/genética
3.
Fish Shellfish Immunol ; 141: 109067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689226

RESUMO

As one of the important members of the autophagy-related protein family, Atg14 plays a key role in the formation and maturation of autophagosomes. However, little is known about the potential roles of fish Atg14 and its roles in virus infection. In the present study, the homolog of Atg14 (EcAtg14) from the orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) of EcAtg14 consists of 1530 nucleotides, encoding 509 amino acids, with a predicted molecular weight of 56.9 kDa. EcAtg14 was distributed in all tested tissues, with higher expression in liver, blood and spleen. The expression of EcAtg14 was increased in grouper spleen (GS) cells after Singapore grouper iridovirus (SGIV) infection. EcAtg14 was distributed in the cytoplasm of GS cells. Overexpression of EcAtg14 promoted SGIV replication in GS cells and inhibited IFN3, ISRE and NF-κB promoter activities. Co-immunoprecipitation results showed that there was an interaction between EcAtg14 and EcBeclin. EcAtg14 also promoted the synthesis of LC3-II in GS cells. These findings provide a basis for understanding the innate immune mechanism of grouper against viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/química , Ranavirus/fisiologia , Imunidade Inata/genética , Filogenia
4.
Traffic ; 21(7): 488-502, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32378292

RESUMO

Lipid droplets (LDs) are cytosolic fat storage organelles that play roles in lipid metabolism, trafficking and signaling. Breakdown of LDs in Saccharomyces cerevisiae is mainly achieved by lipolysis and lipophagy. In this study, we found that the endosomal sorting complex required for transport (ESCRT) in S. cerevisiae negatively regulated the turnover of a LD marker, Erg6, under both simplified glucose restriction (GR) and acute glucose restriction (AGR) conditions by monitoring the localization and degradation of Erg6. Loss of Vps27, Snf7 or Vps4, representative subunits of the ESCRT machinery, facilitated the delivery of Erg6-GFP to vacuoles and its degradation depending on the lipophagy protein Atg15 under simplified GR. Additionally, the lipolysis proteins Tgl3 and Tgl4 were also involved in the enhanced vacuolar localization and degradation of Erg6-GFP in vps4Δ cells. Furthermore, we found that Atg14, which is required for the formation of putatively liquid-ordered (Lo) membrane domains on the vacuole that act as preferential internalization sites for LDs, abundantly localized to vacuolar membranes in ESCRT mutants. Most importantly, the depletion or overexpression of Atg14 correspondingly abolished or promoted the observed Erg6 degradation in ESCRT mutant cells. We propose that Atg14 together with other proteins promotes Erg6 degradation in ESCRT mutant cells under specific glucose restriction conditions. These results shed new light on the regulation of ESCRT on LD turnover.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Glucose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatases , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glucose/metabolismo , Metiltransferases , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Cell Mol Med ; 26(14): 3873-3890, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670018

RESUMO

Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine-727 and Tyrosine-705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2-AMPKα-ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3-KO cells by the enforced expression of wild-type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F- and S727A-STAT3 phosphorylation deficient mutants in STAT3-KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3-KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3-dependent autophagy in GBM, and thus are potential targets to treat GBM.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Glioblastoma , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Transcrição STAT3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismo
6.
New Phytol ; 236(4): 1358-1374, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978547

RESUMO

Autophagy is an essential degradation pathway that assists eukaryote survival under multiple stress conditions. Autophagosomes engulfing cargoes accomplish degradation only when they have matured through fusing with lysosomes or vacuoles. However, the molecular machinery mediating autophagosome maturation in plants remains unknown. Using the combined approaches of mass spectrometry, biochemistry, reverse genetics and microscopy, we uncover that UVRAG, a subunit of the class III phosphatidylinositol 3-kinase complexes in Nicotiana benthamiana, plays an essential role in autophagsome maturation via ATG14-assisted recruitment to autophagosomes and by facilitating RAB7 activation. An interaction between N. benthamiana UVRAG and ATG14 was observed in vitro and in vivo, which strikingly differed from their mutually exclusive appearance in different PI3KC3 complexes in yeast and mammals. This interaction increased the localisation of UVRAG on autophagosomes and enabled the convergence of autophagic and late endosomal structures, where they contributed to fusions between these two types of organelles by recruiting the essential membrane fusion factors RAB7 GTPase and the homotypic fusion and protein sorting (HOPS) complex. In addition, we uncovered a joint contribution of ATG14 and UVRAG to geminiviral infection, beyond autophagy. Our study provides insights into the mechanisms of autophagosome maturation in plants and expands the understanding of organisations and roles of the PI3KC3 complexes.


Assuntos
Autofagossomos , Geminiviridae , Animais , Autofagossomos/metabolismo , Geminiviridae/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mamíferos
7.
EMBO Rep ; 21(5): e49232, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239622

RESUMO

Pneumococcal cell surface-exposed choline-binding proteins (CBPs) play pivotal roles in multiple infectious processes with pneumococci. Intracellular pneumococci can be recognized at multiple steps during bactericidal autophagy. However, whether CBPs are involved in pneumococci-induced autophagic processes remains unknown. In this study, we demonstrate that CbpC from S. pneumoniae strain TIGR4 activates autophagy through an interaction with Atg14. However, S. pneumoniae also interferes with autophagy by deploying CbpC as a decoy to cause autophagic degradation of Atg14 through an interaction with p62/SQSTM1. Thus, S. pneumoniae suppresses the autophagic degradation of intracellular pneumococci and survives within cells. Domain analysis reveals that the coiled-coil domain of Atg14 and residue Y83 of the dp3 domain in the N-terminal region of CbpC are crucial for both the CbpC-Atg14 interaction and the subsequent autophagic degradation of Atg14. Although homology modeling indicates that CbpC orthologs have similar structures in the dp3 domain, autophagy induction through Atg14 binding is an intrinsic property of CbpC. Our data provide novel insights into the evolutionary hijacking of host-defense systems by intracellular pneumococci.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas Relacionadas à Autofagia , Autofagia , Proteínas de Bactérias/metabolismo , Streptococcus pneumoniae , Animais , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular , Humanos , Proteínas de Membrana , Camundongos , Streptococcus pneumoniae/genética
8.
Fish Shellfish Immunol ; 125: 200-211, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35513250

RESUMO

Atg14 (autophagy-related gene 14), also known as Atg14L or Barkor (Beclin-1 associated autophagy-related key regulator), plays an important role in a variety of biological processes including immunity, development, tumor inhibition, longevity, and protection against some cardiac and neurodegenerative diseases. However, very few studies have characterized Atg14 expression in invertebrates, particularly crustaceans. Here, a novel Atg14 gene from Procambarus clarkii (named PcAtg14) was characterized via RACE technology. Bioinformatics analysis showed that the total length of the PcAtg14 gene sequence was 2,880 bp, and it was predicted to encode 488 amino acids. The results of homology comparison showed that PcAtg14 exhibited the highest homology with crustacean the American lobster (Homarus americanus). Quantitative real-time PCR expression analysis showed that PcAtg14 was expressed in all tissues of P. clarkii, with the hepatopancreas having the highest expression and the eyestalk exhibiting the lowest expression. Upon white spot syndrome virus (WSSV) infection, the relative expression of PcAtg14 in the hepatopancreas, muscle, hemocyte, gill, heart and epidermis were significantly up-regulated at different time periods. After PcAtg14 gene silencing via RNA interference (RNAi), the proliferation of WSSV in P. clarkii was significantly inhibited, which coincided with a significant increase in P. clarkii mortality and an increase in the expression of autophagy-related genes (ATGs). Transmission electron microscopy analysis demonstrated an increase in the number of autophagosomes in the hepatopancreas of the PcAtg14 gene silencing group compared to the control group after WSSV infection. Collectively, these results indicated that PcAtg14 suppressed autophagy by reduce the fusion of autophagosomes and lysosomes, thereby promoting WSSV replication in P. clarkii. The findings here therefore provide novel insights into the immune mechanisms through which P. clarkii responds to WSSV infection.


Assuntos
Vírus da Síndrome da Mancha Branca 1 , Animais , Astacoidea , Autofagia , Hemócitos/metabolismo , Imunidade Inata/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia
9.
Ecotoxicol Environ Saf ; 230: 113108, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953272

RESUMO

Fluoride is capable of inducing developmental neurotoxicity, but the mechanisms involved remain unclear. We aimed to explore the role of autophagosome-lysosome fusion in developmental fluoride neurotoxicity, particularly focusing on the interaction between ATG14 and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. We developed in vivo models of Sprague-Dawley rats exposed to sodium fluoride (NaF) from the pregnancy of parental rats until the offspring were two months old and in vitro models of NaF and/or Ad-ATG14-treated SH-SY5Y cells. We assessed neurobehavioral changes in offspring and further investigated the effects of NaF exposure on autophagic flux, apoptosis, autophagosome-lysosome fusion, and the interaction between ATG14 and the SNARE complex. NaF exposure impaired offspring learning and memory capabilities and induced the accumulation of autophagosomes and autophagic flux blockage and apoptosis, as indicated by increased LC3-II, p62, and cleaved-caspase-3 expression in vivo and in vitro. In addition, NaF treatment downregulated the protein expression of ATG14 and the SNARE complex and induced autophagosome-lysosome fusion blockage as evidenced by decreased ATG14, STX17, SNAP29, and VAMP8 expression and diminished colocalization of autophagosomes and lysosomes in vivo and in vitro. Furthermore, ATG14 upregulation enhanced the interaction of ATG14 and the SNARE complex to facilitate autophagosome-lysosome fusion, thereby restoring autophagic flux and alleviating NaF-induced apoptosis. In conclusion, NaF exhibited developmental neurotoxicity by restraining the interaction of ATG14 with the SNARE complex and hindering autophagosome-lysosome fusion, thereby participating in the occurrence and development of fluoride neurotoxicity. Notably, ATG14 upregulation protects against developmental fluoride neurotoxicity, and ATG14 may serve as a promising biomarker for further epidemiological investigation.

10.
Exp Eye Res ; 211: 108731, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411602

RESUMO

To investigate the role of miR-129-5p in inflammation and autophagy in fungal keratitis, we established a keratitis mouse model infected with Fusarium solani (F. solani) and conducted experiments on corneal stromal cells infected with F. solani. The expression of miR-129-5p was detected via quantitative real-time polymerase chain reaction (PCR). The miR-129-5p antagomir was used to transfect cells and mice to study the regulatory role of miR-129-5p in autophagy and inflammation after fungal infection. The expression of Beclin1 and LC3B and colocalization of LC3B with lysosomes were detected via Western blotting and immunofluorescence. CCK-8 was used to determine the viability of corneal stromal cells. The expression of IL-1ß were detected by ELISA. Bioinformatics software was used to predict the potential targets of miR-129-5p, which were verified by a luciferase reporter gene assay. RT-PCR showed that miR-129-5p expression in mouse corneas was significantly increased after infection with F. solani. Subconjunctival injection of the miR-129-5p antagomir significantly enhanced the proteins Beclin-1 and LC3B. At the same time, inhibiting miR-129-5p expression could reduce the inflammatory response in FK and significantly increase the viability of corneal stromal cells infected with F. solan. Moreover, the dual luciferase reporter assay indicated that Atg14 was a direct target of miR-129-5p. Our study shows that miR-129-5p is a novel small molecule that regulates autophagy by targeting Atg14, indicating that it may be a proinflammatory and therapeutic target for fungal keratitis.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/efeitos dos fármacos , Úlcera da Córnea/prevenção & controle , Infecções Oculares Fúngicas/prevenção & controle , Fusariose/prevenção & controle , Inflamação/prevenção & controle , MicroRNAs/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética , Animais , Antagomirs/farmacologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Western Blotting , Úlcera da Córnea/genética , Úlcera da Córnea/microbiologia , Modelos Animais de Doenças , Infecções Oculares Fúngicas/genética , Infecções Oculares Fúngicas/microbiologia , Fusariose/genética , Fusariose/microbiologia , Fusarium , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/fisiologia , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Transporte Vesicular/metabolismo
11.
Cell Commun Signal ; 19(1): 77, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281589

RESUMO

BACKGROUND: CMTM7 is a tumor suppressor that positively regulates EGFR degradation by promoting Rab5 activation, and plays a vital role in tumor progression. Rab5 forms complexes with Beclin1 and VPS34, and acts in the early stage of autophagy. However, the affects of CMTM7 on autophagy and its mechanism are still unclear. METHODS: The effect of CMTM7 on autophagy induction was confirmed by western blotting, confocal microscopy and transmission electron microscopy. Co-immunoprecipitation was used to analyse the interaction of CMTM7 with autophagy initiation complex and Rab5. The xenograft model in nude mice was used to elucidate the function of CMTM7 in tumorigenicity and autophagy in vivo. RESULTS: In this study, we first demonstrated that CMTM7 facilitated the initiation of autophagosome formation, which consequently promoted the subsequent multistage process of autophagic flux, i.e. from autophagosome assembly till autolysosome formation and degradation. Confocal and co-immunoprecipitation showed that CMTM7 interacted with Rab5, VPS34, Beclin1, and ATG14L, but not with ULK1, UVRAG and LC3B. CMTM7 also increased the activity of ATG14L-linked VPS34 complex and its association with Rab5. Both in vitro and in vivo experiments demonstrated that knockdown of CMTM7 enhanced tumor growth by impairing autophagy. CONCLUSION: These findings highlighted the role of CMTM7 in the regulation of autophagy and tumorigenicity, revealing it as a novel molecule that is associated with the interaction of Rab5 and ATG14L-Beclin1-VPS34 complex. Video Abstract.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Quimiocinas/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Proteínas com Domínio MARVEL/genética , Neoplasias/genética , Proteínas rab5 de Ligação ao GTP/genética , Animais , Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Neoplasias/patologia , Proteínas rab5 de Ligação ao GTP/ultraestrutura
12.
Proc Natl Acad Sci U S A ; 115(25): E5669-E5678, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866835

RESUMO

The Beclin 1-Vps34 complex, known as "mammalian class III PI3K," plays essential roles in membrane-mediated transport processes including autophagy and endosomal trafficking. Beclin 1 acts as a scaffolding molecule for the complex and readily transits from its metastable homodimeric state to interact with key modulators such as Atg14L or UVRAG and form functionally distinct Atg14L/UVRAG-containing Beclin 1-Vps34 subcomplexes. The Beclin 1-Atg14L/UVRAG interaction relies critically on their coiled-coil domains, but the molecular mechanism remains poorly understood. We determined the crystal structure of Beclin 1-UVRAG coiled-coil complex and identified a strengthened interface with both hydrophobic pairings and electrostatically complementary interactions. This structure explains why the Beclin 1-UVRAG interaction is more potent than the metastable Beclin 1 homodimer. Potent Beclin 1-UVRAG interaction is functionally significant because it renders UVRAG more competitive than Atg14L in Beclin 1 binding and is critical for promoting endolysosomal trafficking. UVRAG coiled-coil mutants with weakened Beclin 1 binding do not outcompete Atg14L and fail to promote endolysosomal degradation of the EGF receptor (EGFR). We designed all-hydrocarbon stapled peptides that specifically targeted the C-terminal part of the Beclin 1 coiled-coil domain to interfere with its homodimerization. One such peptide reduced Beclin 1 self-association, promoted Beclin 1-Atg14L/UVRAG interaction, increased autophagic flux, and enhanced EGFR degradation. Our results demonstrate that the targeting Beclin 1 coiled-coil domain with designed peptides to induce the redistribution of Beclin 1 among its self-associated form or Atg14L/UVRAG-containing complexes enhances both autophagy and endolysosomal trafficking.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Transporte Proteico/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/fisiologia , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Lisossomos/fisiologia , Domínios Proteicos/fisiologia
13.
EMBO Rep ; 19(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925525

RESUMO

In fed cells, syntaxin 17 (Stx17) is associated with microtubules at the endoplasmic reticulum-mitochondria interface and promotes mitochondrial fission by determining the localization and function of the mitochondrial fission factor Drp1. Upon starvation, Stx17 dissociates from microtubules and Drp1, and binds to Atg14L, a subunit of the phosphatidylinositol 3-kinase complex, to facilitate phosphatidylinositol 3-phosphate production and thereby autophagosome formation, but the mechanism underlying this phenomenon remains unknown. Here we identify MAP1B-LC1 (microtubule-associated protein 1B-light chain 1) as a critical regulator of Stx17 function. Depletion of MAP1B-LC1 causes Stx17-dependent autophagosome accumulation even under nutrient-rich conditions, whereas its overexpression blocks starvation-induced autophagosome formation. MAP1B-LC1 links microtubules and Stx17 in fed cells, and starvation causes the dephosphorylation of MAP1B-LC1 at Thr217, allowing Stx17 to dissociate from MAP1B-LC1 and bind to Atg14L. Our results reveal the mechanism by which Stx17 changes its binding partners in response to nutrient status.


Assuntos
Autofagossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Qa-SNARE/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Tubulina (Proteína)/metabolismo
14.
Exp Cell Res ; 384(2): 111641, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31550441

RESUMO

Parkin is an ubiquitin ligase regulating mitochondrial quality control reactions, including the autophagic removal of depolarized mitochondria (mitophagy). Parkin-mediated protein ubiquitinations may be counteracted by deubiquitinating enzymes (DUBs). We conducted a high-content imaging screen of Parkin translocation to depolarized mitochondria after siRNA mediated silencing of each DUB in Parkin overexpressing HeLa cells. Knockdown of the ubiquitin-specific protease USP36 led to delayed Parkin translocation while only slightly disturbing the ubiquitination of mitochondrial proteins, but final autophagic elimination of mitochondria was severely disrupted. The localization of the nucleolar USP36 was not altered during mitophagy. However, the marker for transcriptional active chromatin, histone 2B Lys120 mono-ubiquitination was found reduced in USP36-silenced cells undergoing mitophagy. We observed a reduction of the mRNA and protein levels of Beclin-1 and its associated autophagy-related key regulator ATG14L in USP36 knockdown cells. Importantly, transfection of active ATG14L into USP36-silenced cells significantly restored Parkin-dependent mitophagy. We propose USP36 as regulator for the Parkin-dependent mitophagy at least in part via the Beclin-1-ATG14L pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Proteína Beclina-1/genética , Regulação para Baixo/genética , Mitofagia/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes/métodos , Células HeLa , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Ubiquitina/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
15.
Ren Fail ; 42(1): 333-342, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32340512

RESUMO

MicroRNAs are involved in the regulation of the autophagy and proliferation in several diseases. This study aims to verify the role of miR-25-3p in the proliferation and autophagy of renal cells in polycystic kidney disease (PKD). We found that kidney to body weight and blood urea content were increased in PKD mice. Cystic dilations were increased in kidney tissue from PKD mice, and autophagy-related protein ULK1 and the ratio of LC3-II/LC3-I were decreased, indicating autophagy was inhibited in PKD mice. In addition, miR-25-3p was upregulated in PKD mice, and inhibition of miR-25-3p decreased cystic dilations in kidney tissues, increased ULK1 expression and the ratio of LC3-II/LC3-I, indicating inhibition of miR-25-3p enhanced the autophagy in PKD. Besides, inhibition of miR-25-3p suppressed the proliferation of renal cells and downregulated E2F-1 and PCNA expressions. Importantly, miR-25-3p targetedly suppressed ATG14 expression in PKD cells. Finally, silencing ATG14 abolished the inhibition effect of miR-25-3p inhibitor on renal cell proliferation, and reversed the inhibition effect of miR-25-3p inhibitor on E2F-1 and PCNA expressions in in vitro and in vivo experiments, which suggested that ATG14 was involved in the regulation of miR-25-3p-mediated kidney cell proliferation. Therefore, inhibition of miR-25-3p promoted cell autophagy and suppressed cell proliferation in PKD mice through regulating ATG14.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteína Beclina-1/metabolismo , Proliferação de Células , MicroRNAs/genética , Doenças Renais Policísticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Regulação para Baixo , Células Epiteliais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Regulação para Cima , Proteínas de Transporte Vesicular/genética
16.
Pulm Pharmacol Ther ; 55: 38-49, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703554

RESUMO

INTRODUCTION: Pulmonary arterial hypertension (PAH) is a life-threatening disease without effective therapies. PAH is associated with a progressive increase in pulmonary vascular resistance and irreversible pulmonary vascular remodeling. SUMO1 (small ubiquitin-related modifier 1) can bind to target proteins and lead to protein SUMOylation, an important post-translational modification with a key role in many diseases. However, the contribution of SUMO1 to PAH remains to be fully characterized. METHODS: In this study, we explored the role of SUMO1 in the dedifferentiation of vascular smooth muscle cells (VSMCs) involved in hypoxia-induced pulmonary vascular remodeling and PAH in vivo and in vitro. RESULTS: In a mouse model of hypoxic PAH, SUMO1 expression was significantly increased, which was associated with activation of autophagy (increased LC3b and decreased p62), dedifferentiation of pulmonary arterial VSMCs (reduced α-SMA, SM22 and SM-MHC), and pulmonary vascular remodeling. Similar results were obtained in a MCT-induced PAH model. Overexpression of SUMO1 significantly increased VSMCs proliferation, migration, hypoxia-induced VSMCs dedifferentiation, and autophagy, but these effects were abolished by inhibition of autophagy by 3-MA in aortic VSMCs. Furthermore, SUMO1 knockdown reversed hypoxia-induced proliferation and migration of PASMCs. Mechanistically, SUMO1 promotes Vps34 SUMOylation and the assembly of the Beclin-1-Vps34-Atg14 complex, thereby inducing autophagy, whereas Vps34 mutation K840R reduces Vps34 SUMOylation and inhibits VSMCs dedifferentiation. DISCUSSION: Our data uncovers an important role of SUMO1 in VSMCs proliferation, migration, autophagy, and phenotypic switching (dedifferentiation) involved in pulmonary vascular remodeling and PAH. Targeting of the SUMO1-Vps34-autophagy signaling axis may be exploited to develop therapeutic strategies to treat PAH.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Hipertensão Pulmonar/fisiopatologia , Proteína SUMO-1/metabolismo , Sumoilação , Animais , Autofagia/fisiologia , Desdiferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteína SUMO-1/genética , Remodelação Vascular/fisiologia
17.
Proc Natl Acad Sci U S A ; 113(39): 10896-901, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621469

RESUMO

Autophagy is a regulated self-digestion pathway with fundamental roles in cell homeostasis and diseases. Autophagy is regulated by coordinated actions of a series of autophagy-related (ATG) proteins. The Barkor/ATG14(L)-VPS34 (a class III phosphatidylinositol 3-kinase) complex and its product phosphatidylinositol 3-phosphate [PtdIns(3)P] play key roles in autophagy initiation. ATG14 contains a C-terminal Barkor/ATG14(L) autophagosome-targeting sequence (BATS) domain that senses the curvature of PtdIns(3)P-containing membrane. The BATS domain also strongly binds PtdIns(4,5)P2, but the functional significance has been unclear. Here we show that ATG14 specifically interacts with type Iγ PIP kinase isoform 5 (PIPKIγi5), an enzyme that generates PtdIns(4,5)P2 in mammalian cells. Autophagosomes have associated PIPKIγi5 and PtdIns(4,5)P2 that are colocalized with late endosomes and the endoplasmic reticulum. PtdIns(4,5)P2 generation at these sites requires PIPKIγi5. Loss of PIPKIγi5 results in a loss of ATG14, UV irradiation resistance-associated gene, and Beclin 1 and a block of autophagy. PtdIns(4,5)P2 binding to the ATG14-BATS domain regulates ATG14 interaction with VPS34 and Beclin 1, and thus plays a key role in ATG14 complex assembly and autophagy initiation. This study identifies an unexpected role for PtdIns(4,5)P2 signaling in the regulation of ATG14 complex and autophagy.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool) , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Frações Subcelulares/metabolismo
18.
Cell Physiol Biochem ; 48(6): 2517-2527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30121664

RESUMO

BACKGROUND/AIMS: The purpose of our experiments was to investigate the targeting relationship of linc00515, miR-140-5p and ATG14 and to explore the roles of linc00515, miR-140-5p and ATG14 in autophagy and chemoresistance of melphalan-resistant multiple myeloma cells. METHODS: Plasmids that could interfere with the expression of linc00515 and ATG14 were loaded into myeloma cells, which were cultured with melphalan. MTT assay and flow cytometry analysis were utilized to investigate the effect of linc00515, miR-140-5p and ATG14 on the resistance of myeloma cells. QRT-PCR was used to determine the levels of mRNAs. Western blot was utilized to explore the level of ATG14 and autophagy-related proteins. Dual luciferase assay was utilized to explore the targeting relationship between linc00515, miR-140-5p and ATG14. GFP LC3 fluorescence assay was conducted to study the autophagy of cells. RESULTS: The expression of linc00515 and ATG14 were significantly higher in melphalan-resistant myeloma cells. Knockdown of linc00515 and ATG14 led to decreased autophagy and chemoresistance of melphalan-resistant myeloma cells. The forced expression of miR-140-5p suppressed autophagy and chemoresistance of melphalan-resistant myeloma cells. CONCLUSION: Linc00515 enhanced autophagy and chemoresistance of melphalan-resistant myeloma by directly inhibiting miR-140-5p, which elevated ATG14 level.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antagomirs/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Masculino , Melfalan/farmacologia , MicroRNAs/genética , Pessoa de Meia-Idade , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima
19.
Biochem Biophys Res Commun ; 506(1): 272-277, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30348524

RESUMO

Ischemic heart disease (IHD) is a significant cause of cardiovascular diseases. MicroRNAs (miRNAs) have been thought to be critical regulators in the heart diseases. The present study was aimed to investigate the effect of miR-129-5p on the autophagy and apoptosis by targeting ATG14 as well as how miR-129-5p worked through the PI3K/AKT/mTOR signaling pathway in H2O2-induced H9c2 cells. H9c2 cells were induced by H2O2, after which the expression of miR-129-5p was decreased. Reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was performed to detect the expression level of miR-129-5p in H9c2 cells. In addition, the expression of miR-129-5p and ATG14 were overexpressed or down-regulated after transfection. The transfection efficiency was verified by qRT-PCR. Cell viability, cell apoptosis, and the expression of autophagy and apoptosis-related proteins were determined by CCK-8, flow cytometry and western blotting, respectively. Furthermore, GFP fusion protein analysis was used to detect the expression level of LC3II which was related to autophagy. As a result, cell viability was decreased and cell autophagy was increased in H2O2-induced H9c2 cells. MiR-129-5p overexpression inhibited cell injury caused by H2O2 in H9c2 cells which was certified by the increased cell viability and decreased cell autophagy and apoptosis. In addition, ATG14 was demonstrated to be a target of miR-129-5p which inhibited cell injury by down-regulation of ATG14. Moreover, phosphorylation of PI3K/AKT/mTOR pathway was activated by miR-129-5p overexpression or ATG14 inhibition to alleviate the autophagy and apoptosis in H2O2-induced H9c2 cells. In conclusion, this study indicated that miR-129-5p inhibited autophagy and apoptosis in H2O2-induced H9c2 cells partly by down-regulation of ATG14 through the activation of PI3K/AKT/mTOR pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Apoptose , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Autofagia , Peróxido de Hidrogênio/farmacologia , MicroRNAs/fisiologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Humanos , MicroRNAs/análise , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
20.
Exp Cell Res ; 352(1): 63-74, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159471

RESUMO

MicroRNAs (miRNAs) have been the subject of recent attention as key regulatory factors in cell differentiation. In the current study, to explore the early signaling cascade of osteogenic differentiation of human induced pluripotent stem (hiPS) cells, we investigated miR-211 regulation and autophagy-related gene (Atg) signaling in osteogenic differentiation. In addition to reciprocal strong induction of miR-211 expression in differentiated cells following osteogenic differentiation, we found abundant Argonaute 3 bound to miR-211. There were also dramatic increases in the mRNA and protein levels of Atg14 together with increases in the amount of autophagosomes as well as autophagic fluxes. While transfection of a miR-211 inhibitor abrogated the induction of Atg14, autophagy events, osteoblast differentiation markers, and induction of calcification were suppressed markedly. Treatment with small interfering RNAs against Atg14 also suppressed the osteogenic differentiation medium (ODM)-induced increase in osteogenic differentiation. The osteogenic phenotype was inhibited by chloroquine (an autophagy inhibitor), but increased after treatment with rapamycin (an autophagy inducer). Taken together with our previous findings, we have revealed a unique sequential cascade involving miR-211 and Atg14 in ODM-induced differentiation of hiPS cells into osteoblast-like cells at a relatively early stage.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética , Osteoblastos/citologia , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/genética , Western Blotting , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA