Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 300: 120845, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39276817

RESUMO

Magnetic Resonance Spectroscopic Imaging (MRSI) is a powerful technique that can map the metabolic profile in the brain non-invasively. Extracranial lipid contamination and insufficient B0 homogeneity however hampers robustness, and as a result has hindered widespread use of MRSI in clinical and research settings. Over the last six years we have developed highly effective extracranial lipid suppression methods with a second order gradient insert (ECLIPSE) utilizing inner volume selection (IVS) and outer volume suppression (OVS) methods. While ECLIPSE provides > 100-fold in lipid suppression with modest radio frequency (RF) power requirements and immunity to B1+ field variations, axial coverage is reduced for non-elliptical head shapes. In this work we detail the design, construction, and utility of MC-ECLIPSE, a pulsed second order gradient coil with Z2 and X2Y2 fields, combined with a 54-channel multi-coil (MC) array. The MC-ECLIPSE platform allows arbitrary region of interest (ROI) shaped OVS for full-axial slice coverage, in addition to MC-based B0 field shimming, for robust human brain proton MRSI. In vivo experiments demonstrate that MC-ECLIPSE allows axial brain coverage of 92-95 % is achieved following arbitrary ROI shaped OVS for various head shapes. The standard deviation (SD) of the residual B0 field following SH2 and MC shimming were 25 ± 9 Hz and 18 ± 8 Hz over a 5 cm slab, and 18 ± 5 Hz and 14 ± 6 Hz over a 1.5 cm slab, respectively. These results demonstrate that B0 magnetic field shimming with the MC array supersedes second order harmonic capabilities available on standard MRI systems for both restricted and large ROIs. Furthermore, MC based B0 shimming provides comparable shimming performance to an unrestricted SH5 shim set for both restricted, and 5-cm slab shim challenges. Phantom experiments demonstrate the high level of localization performance achievable with MC-ECLIPSE, with ROI edge chemical shift displacements ranging from 1-3 mm with a median value of 2 mm, and transition width metrics ranging from 1-2.5 mm throughout the ROI edge. Furthermore, MC based B0 shimming is comparable to performance following a full set of unrestricted spherical harmonic fields up to order 5. Short echo time MRSI and GABA-edited MRSI acquisitions in the human brain following MC-shimming and arbitrary ROI shaping demonstrate full-axial slice coverage and extracranial lipid artifact free spectra. MC-ECLIPSE allows full-axial coverage and robust MRSI acquisitions, while allowing interrogation of cortical tissue proximal to the skull, which has significant value in a wide range of neurological and psychiatric conditions.


Assuntos
Encéfalo , Lipídeos , Humanos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Lipídeos/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Masculino , Adulto , Feminino
2.
Magn Reson Med ; 92(6): 2535-2545, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39129199

RESUMO

PURPOSE: To implement rosette readout trajectories with compressed sensing reconstruction for fast and motion-robust CEST and magnetization transfer contrast imaging with inherent correction of B0 inhomogeneity. METHODS: A pulse sequence was developed for fast saturation transfer imaging using a stack of rosette trajectories with a higher sampling density near the k-space center. Each rosette lobe was segmented into two halves to generate dual-echo images. B0 inhomogeneities were estimated using the phase difference between the images and corrected subsequently. The rosette-based imaging was evaluated in comparison to a fully sampled Cartesian trajectory and demonstrated on CEST phantoms (creatine solutions and egg white) and healthy volunteers at 3 T. RESULTS: Compared with the conventional Cartesian acquisition, compressed sensing reconstructed rosette images provided image quality with overall higher contrast-to-noise ratio and significantly faster readout time. Accurate B0 map estimation was achieved from the rosette acquisition with a negligible bias of 0.01 Hz between the rosette and dual-echo Cartesian gradient echo B0 maps, using the latter as ground truth. The water-saturation spectra (Z-spectra) and amide proton transfer weighted signals obtained from the rosette-based sequence were well preserved compared with the fully sampled data, both in the phantom and human studies. CONCLUSIONS: Fast, motion-robust, and inherent B0-corrected CEST and magnetization transfer contrast imaging using rosette trajectories could improve subject comfort and compliance, contrast-to-noise ratio, and provide inherent B0 homogeneity information. This work is expected to significantly accelerate the translation of CEST-MRI into a robust, clinically viable approach.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Compressão de Dados/métodos , Voluntários Saudáveis , Razão Sinal-Ruído , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Aumento da Imagem/métodos
3.
Magn Reson Med ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188098

RESUMO

PURPOSE: To assess the impact of different B0 shimming algorithms on MRS. METHODS: B0 field maps and single-voxel MR spectroscopy were acquired in the prefrontal cortex of five volunteers at 3 T using five different B0 shimming approaches. B0 shimming was achieved using Siemens' proprietary shim algorithm, in addition to the Pseudo-Inverse (PI), Quadratic Programming (QuadProg), Least Squares (LSq), and Gradient optimization (Grad) algorithms. The standard deviation of the shimmed B0 field, as well as the SNR and FWHM of the measured metabolites, was used to evaluate the performance of each B0 shimming algorithm. RESULTS: Compared to Siemens's shim, significant reductions (p < 0.01) in the standard deviation of the B0 field distribution within the MRS voxel were observed for the PI, QuadProg, and Grad algorithms (3.8 Hz, 7.3 Hz, and 3.9 Hz respectively, compared to 11.5 Hz for Siemens), but not for the LSq (12.9 Hz) algorithm. Moreover, significantly increased SNR and reduced FWHM for the N-acetylaspartate metabolite were consistent with the improvement in B0 homogeneity for the aforementioned shimming algorithms. CONCLUSION: Here, we demonstrate that the choice of B0 shimming algorithm can have a significant impact on the quality of MR spectra and that significant improvements in spectrum quality could be achieved by using alternatives to the default vendor approach.

4.
Magn Reson Med ; 92(5): 1867-1880, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38818538

RESUMO

PURPOSE: To employ optimal control for the numerical design of Chemical Exchange Saturation Transfer (CEST) saturation pulses to maximize contrast and stability against B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities. THEORY AND METHODS: We applied an optimal control framework for the design pulse shapes for CEST saturation pulse trains. The cost functional minimized both the pulse energy and the discrepancy between the corresponding CEST spectrum and the target spectrum based on a continuous radiofrequency (RF) pulse. The optimization is subject to hardware limitations. In measurements on a 7 T preclinical scanner, the optimal control pulses were compared to continuous-wave and Gaussian saturation methods. We conducted a comparison of the optimal control pulses with Gaussian, block pulse trains, and adiabatic spin-lock pulses. RESULTS: The optimal control pulse train demonstrated saturation levels comparable to continuous-wave saturation and surpassed Gaussian saturation by up to 50 % in phantom measurements. In phantom measurements at 3 T the optimized pulses not only showcased the highest CEST contrast, but also the highest stability against field inhomogeneities. In contrast, block pulse saturation resulted in severe artifacts. Dynamic Bloch-McConnell simulations were employed to identify the source of these artifacts, and underscore the B 0 $$ {\mathrm{B}}_0 $$ robustness of the optimized pulses. CONCLUSION: In this work, it was shown that a substantial improvement in pulsed saturation CEST imaging can be achieved by using Optimal Control design principles. It is possible to overcome the sensitivity of saturation to B0 inhomogeneities while achieving CEST contrast close to continuous wave saturation.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Distribuição Normal , Humanos , Simulação por Computador , Meios de Contraste/química , Ondas de Rádio
5.
Magn Reson Med ; 91(2): 842-849, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849021

RESUMO

PURPOSE: To develop a flexible, lightweight, and multi-purpose integrated parallel reception, excitation, and shimming (iPRES) coil array that can conform to the subject's anatomy and perform MR imaging and localized B0 shimming in different anatomical regions with a high SNR, shimming performance, ease of positioning, and subject comfort. METHODS: A four-channel flexible iPRES coil array was constructed by enabling RF and direct currents to flow on the same flexible coil elements for imaging and shimming, respectively. Shimming experiments were performed with the coil array wrapped around the knee or neck of healthy subjects to demonstrate its high shimming performance and versatility. Additionally, its SNR and shimming performance in the knee were compared to those obtained with the coil array wrapped around a larger rigid tube designed to fit most knee sizes. RESULTS: Shimming with the coil array wrapped around the knee or neck resulted in an average reduction in B0 RMSE of 50.1% and 40.5% relative to first-order and second-order spherical harmonic shimming, respectively, and substantially reduced distortions in DWI images. In contrast, shimming the knee with the coil array wrapped around the rigid tube only provided a 29.6% reduction in B0 RMSE, whereas the SNR was reduced by 58.7%. CONCLUSION: The flexible iPRES coil array can conform to different anatomical regions and perform imaging and localized B0 shimming with a higher SNR, shimming performance, ease of positioning, and comfort compared to a rigid iPRES coil array, which should be valuable for many applications throughout the human body.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Articulação do Joelho/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
6.
Magn Reson Med ; 91(5): 2028-2043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38173304

RESUMO

PURPOSE: To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations ( δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS: Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion or δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS: Simulations and in vivo experiments show the need to model δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strong δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS: We developed a framework to jointly estimate rigid motion parameters and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Movimento (Física) , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem
7.
Magn Reson Med ; 91(5): 2044-2056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193276

RESUMO

PURPOSE: Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0 ), which is a prerequisite for high quality data. Thus, characterization of changes to B0 , for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. METHODS: We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo gradient-echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. RESULTS: Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. CONCLUSION: It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Movimento , Processamento de Imagem Assistida por Computador/métodos , Artefatos
8.
Magn Reson Med ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39233495

RESUMO

PURPOSE: To develop an efficient navigator-based motion and temporal B0-shift correction technique for 3D multi-echo gradient-echo (ME-GRE) MRI for quantitative susceptibility mapping (QSM) and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping. THEORY AND METHODS: A dual-echo 3D stack-of-spiral navigator was designed to interleave with the Cartesian multi-echo gradient-echo acquisitions, allowing the acquisition of both low-echo and high-echo time signals. We additionally designed a novel conjugate phase-based reconstruction method for the joint correction of motion and temporal B0 shifts. We performed numerical simulation, phantom scans, and in vivo human scans to assess the performance of the methods. RESULTS: Numerical simulation and human brain scans demonstrated that the proposed technique successfully corrected artifacts induced by both head motions and temporal B0 changes. Efficient B0-change correction with conjugate-phase reconstruction can be performed on fewer than 10 clustered k-space segments. In vivo scans showed that combining temporal B0 correction with motion correction further reduced artifacts and improved image quality in both R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and QSM images. CONCLUSION: Our proposed approach of using 3D spiral navigators and a novel conjugate-phase reconstruction method can improve susceptibility-related measurements using MR.

9.
Magn Reson Med ; 91(4): 1434-1448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156952

RESUMO

PURPOSE: Static and dynamic B 0 $$ {\mathrm{B}}_0 $$ field imperfections are detrimental to functional MRI (fMRI) applications, especially at ultra-high magnetic fields (UHF). In this work, a field camera is used to assess the benefits of retrospectively correcting B 0 $$ {\mathrm{B}}_0 $$ field perturbations on Blood Oxygen Level Dependent (BOLD) sensitivity in non-Cartesian three-dimensional (3D)-SPARKLING fMRI acquisitions. METHODS: fMRI data were acquired at 1 mm 3 $$ {}^3 $$ and for a 2.4s-TR while concurrently monitoring in real-time field perturbations using a Skope Clip-on field camera in a novel experimental setting involving a shorter TR than the required minimal TR of the field probes. Measurements of the dynamic field deviations were used along with a static Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ map to retrospectively correct static and dynamic field imperfections, respectively. In order to evaluate the impact of such a correction on fMRI volumes, a comparative study was conducted on healthy volunteers. RESULTS: Correction of B 0 $$ {\mathrm{B}}_0 $$ deviations improved image quality and yielded between 20% and 30% increase in median temporal signal-to-noise ratio (tSNR).Using fMRI data collected during a retinotopic mapping experiment, we demonstrated a significant increase in sensitivity to the BOLD contrast and improved accuracy of the BOLD phase maps: 44% (resp., 159%) more activated voxels were retrieved when using a significance control level based on a p-value of 0.001 without correcting for multiple comparisons (resp., 0.05 with a false discovery rate correction). CONCLUSION: 3D-SPARKLING fMRI hugely benefits from static and dynamic B 0 $$ {\mathrm{B}}_0 $$ imperfections correction. However, the proposed experimental protocol is flexible enough to be deployed on a large spectrum of encoding schemes, including arbitrary non-Cartesian readouts.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos Retrospectivos , Razão Sinal-Ruído
10.
Magn Reson Med ; 92(6): 2373-2391, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39046914

RESUMO

PURPOSE: To optimize Relaxation along a Fictitious Field (RAFF) pulses for rotating frame relaxometry with improved robustness in the presence of B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities. METHODS: The resilience of RAFF pulses against B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities was studied using Bloch simulations. A parameterized extension of the RAFF formulation was introduced and used to derive a generalized inhomogeneity-resilient RAFF (girRAFF) pulse. RAFF and girRAFF preparation efficiency, defined as the ratio of the longitudinal magnetization before and after the preparation ( M z ( T p ) / M 0 $$ {M}_z\left({T}_p\right)/{M}_0 $$ ), were simulated and validated in phantom experiments. T RAFF $$ {T}_{\mathrm{RAFF}} $$ and T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ parametric maps were acquired at 3T in phantom, the calf muscle, and the knee cartilage of healthy subjects. The relaxation time maps were analyzed for resilience against artificially induced field inhomogeneities and assessed in terms of in vivo reproducibility. RESULTS: Optimized girRAFF preparations yielded improved preparation efficiency (0.95/0.91 simulations/phantom) with respect to RAFF (0.36/0.67 simulations/phantom). T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ preparations showed in phantom/calf 6.0/4.8 times higher resilience to B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities than RAFF, and a 4.7/5.3 improved resilience to B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. In the knee cartilage, T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ (53 ± $$ \pm $$ 14 ms) was higher than T RAFF $$ {T}_{\mathrm{RAFF}} $$ (42 ± $$ \pm $$ 11 ms). Moreover, girRAFF preparations yielded 7.6/4.9 times improved reproducibility across B 0 $$ {\mathrm{B}}_0 $$ / B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity conditions, 1.9 times better reproducibility across subjects and 1.2 times across slices compared with RAFF. Dixon-based fat suppression led to a further 15-fold improvement in the robustness of girRAFF to inhomogeneities. CONCLUSIONS: RAFF pulses display residual sensitivity to off-resonance and pronounced sensitivity to B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. Optimized girRAFF pulses provide increased robustness and may be an appealing alternative for applications where resilience against field inhomogeneities is required.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Músculo Esquelético/fisiologia , Músculo Esquelético/diagnóstico por imagem , Adulto , Reprodutibilidade dos Testes , Masculino
11.
Magn Reson Med ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155406

RESUMO

PURPOSE: To develop a Dixon-based B 0 $$ {\mathrm{B}}_0 $$ self-navigation approach to estimate and correct temporal B 0 $$ {\mathrm{B}}_0 $$ variations in radial stack-of-stars gradient echo imaging for quantitative body MRI. METHODS: The proposed method estimates temporal B 0 $$ {\mathrm{B}}_0 $$ variations using a B 0 $$ {\mathrm{B}}_0 $$ self-navigator estimated by a graph-cut-based water-fat separation algorithm on the oversampled k-space center. The B 0 $$ {\mathrm{B}}_0 $$ self-navigator was employed to correct for phase differences between radial spokes (one-dimensional [1D] correction) and to perform a motion-resolved reconstruction to correct spatiotemporal pseudo-periodic B 0 $$ {\mathrm{B}}_0 $$ variations (three-dimensional [3D] correction). Numerical simulations, phantom experiments and in vivo neck scans were performed to evaluate the effects of temporal B 0 $$ {\mathrm{B}}_0 $$ variations on the field-map, proton density fat fraction (PDFF) and T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ map, and to validate the proposed method. RESULTS: Temporal B 0 $$ {\mathrm{B}}_0 $$ variations were found to cause signal loss and phase shifts on the multi-echo images that lead to an underestimation of T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ , while PDFF mapping was less affected. The B 0 $$ {\mathrm{B}}_0 $$ self-navigator captured slowly varying temporal B 0 $$ {\mathrm{B}}_0 $$ drifts and temporal variations caused by respiratory motion. While the 1D correction effectively corrected B 0 $$ {\mathrm{B}}_0 $$ drifts in phantom studies, it was insufficient in vivo due to 3D spatially varying temporal B 0 $$ {\mathrm{B}}_0 $$ variations with amplitudes of up to 25 Hz at 3 T near the lungs. The proposed 3D correction locally improved the correction of field-map and T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ and reduced image artifacts. CONCLUSION: Temporal B 0 $$ {\mathrm{B}}_0 $$ variations particularly affect T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping in radial stack-of-stars imaging. The self-navigation approach can be applied without modifying the MR acquisition to correct for B 0 $$ {\mathrm{B}}_0 $$ drift and physiological motion-induced B 0 $$ {\mathrm{B}}_0 $$ variations, especially in the presence of fat.

12.
J Nanobiotechnology ; 22(1): 130, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532399

RESUMO

Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Células Epiteliais , Animais , Humanos , Coelhos , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Transporte Biológico , Células Epiteliais/metabolismo , Carnitina/metabolismo , Carnitina/farmacologia
13.
Cell Mol Biol Lett ; 29(1): 90, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877403

RESUMO

The membrane-delimited receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2), which is expressed in the intestine, collaborates with broad neutral amino acid transporter 1 (B0AT1). Tryptophan (Trp) is transported into intestinal epithelial cells by ACE2 and B0AT1. However, whether ACE2 and its binding protein B0AT1 are involved in Trp-mediated alleviation of intestinal injury is largely unknown. Here, we used weaned piglets and IPEC-J2 cells as models and found that ACE2/B0AT1 alleviated lipopolysaccharide (LPS)-induced diarrhea and promoted intestinal barrier recovery via transport of Trp. The levels of the aryl hydrocarbon receptor (AhR) and mechanistic target of rapamycin (mTOR) pathways were altered by ACE2. Dietary Trp supplementation in LPS-treated weaned piglets revealed that Trp alleviated diarrhea by promoting ACE2/B0AT1 expression, and examination of intestinal morphology revealed that the damage to the intestinal barrier was repaired. Our study demonstrated that ACE2 accompanied by B0AT1 mediated the alleviation of diarrhea by Trp through intestinal barrier repair via the mTOR pathway.


Assuntos
Enzima de Conversão de Angiotensina 2 , Diarreia , Mucosa Intestinal , Lipopolissacarídeos , Serina-Treonina Quinases TOR , Triptofano , Animais , Triptofano/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Suínos , Diarreia/metabolismo , Mucosa Intestinal/metabolismo , Transdução de Sinais , Linhagem Celular , COVID-19/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , SARS-CoV-2
14.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791603

RESUMO

In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.


Assuntos
Dopamina , Mucosa Intestinal , Permeabilidade , Sistema Renina-Angiotensina , Junções Íntimas , Humanos , Sistema Renina-Angiotensina/fisiologia , Dopamina/metabolismo , Animais , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo , Trato Gastrointestinal/metabolismo , Função da Barreira Intestinal
15.
Neuroimage ; 268: 119868, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646161

RESUMO

Cortico-spinal fMRI acquisitions aim to investigate direct interactions between brain and spinal cord, e.g. during motor output or pain processing, by covering both regions in a single measurement. Due to their large distance and location in the body, a dynamic shim update of constant and linear shim terms is required when using echo-planar imaging (EPI) to achieve reasonable image quality in both target regions. A previously presented approach with region-wise shim settings is based on a standard single-region shim algorithm and suffers from (i) non-optimal shim settings because it combines linear and second-order shim terms optimized for different volumes, and (ii) significant user interactions making it rather cumbersome, time consuming, and error-prone. Here, a dedicated ("CoSpi") shim algorithm for cortico-spinal fMRI is presented that performs joint optimization of static second-order shim terms and one set of linear and constant shim terms for each region in a single run and with minimal user interaction. Field map and T2*-weighted EPI measurements were performed on a clinical 3 T whole-body MR system in water phantoms and five healthy volunteers using the conventional region-wise and CoSpi shim settings as well as "gold standard" shim settings optimized for one of the target regions only. With CoSpi shim settings, (i) overall field inhomogeneity was reduced by about 65% / 75% (brain / spinal cord volume) compared to the conventional region-wise approach and in vivo was within 5% of the values obtained with the single-volume shim settings, (ii) geometric distortions derived from voxel displacement maps were reduced on average by about 35% / 70%, (iii) the temporal SNR determined from an EPI time series that may reflect the impact of through-slice dephasing, was increased by about 17% / 10%, and (iv) the variation of the mean field between slices, a measure targeting the predisposition to insufficient fat saturation and GRAPPA-related ghosting artifacts, was reduced by about 90% / 45%. Thus, the presented algorithm not only speeds up and simplifies the shim procedure considerably, but also provides a better field homogeneity and image quality, which both could help to significantly improve the applicability of cortico-spinal fMRI.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Algoritmos
16.
Magn Reson Med ; 90(3): 1228-1241, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37145035

RESUMO

PURPOSE: To design and implement a multi-coil (MC) array for B0 field generation for image encoding and simultaneous advanced shimming in a novel 1.5T head-only MRI scanner. METHODS: A 31-channel MC array was designed following the unique constraints of this scanner design: The vertically oriented magnet is very short, stopping shortly above the shoulders of a sitting subject, and includes a window for the subject to see through. Key characteristics of the MC hardware, the B0 field generation capabilities, and thermal behavior, were optimized in simulations prior to its construction. The unit was characterized via bench testing. B0 field generation capabilities were validated on a human 4T MR scanner by analysis of experimental B0 fields and by comparing images for several MRI sequences acquired with the MC array to those acquired with the system's linear gradients. RESULTS: The MC system was designed to produce a multitude of linear and nonlinear magnetic fields including linear gradients of up to 10 kHz/cm (23.5 mT/m) with MC currents of 5 A per channel. With water cooling it can be driven with a duty cycle of up to 74% and ramp times of 500 µs. MR imaging experiments encoded with the developed multi-coil hardware were largely artifact-free; residual imperfections were predictable, and correctable. CONCLUSION: The presented compact multi-coil array is capable of generating image encoding fields with amplitudes and quality comparable to clinical systems at very high duty cycles, while additionally enabling high-order B0 shimming capabilities and the potential for nonlinear encoding fields.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Campos Magnéticos , Artefatos
17.
Magn Reson Med ; 90(1): 90-102, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883726

RESUMO

PURPOSE: To develop a fast, deep-learning approach for quantitative magnetization-transfer contrast (MTC)-MR fingerprinting (MRF) that simultaneously estimates multiple tissue parameters and corrects the effects of B0 and B1 variations. METHODS: An only-train-once recurrent neural network was designed to perform the fast tissue-parameter quantification for a large range of different MRF acquisition schedules. It enabled a dynamic scan-wise linear calibration of the scan parameters using the measured B0 and B1 maps, which allowed accurate, multiple-tissue parameter mapping. MRF images were acquired from 8 healthy volunteers at 3 T. Estimated parameter maps from the MRF images were used to synthesize the MTC reference signal (Zref ) through Bloch equations at multiple saturation power levels. RESULTS: The B0 and B1 errors in MR fingerprints, if not corrected, would impair the tissue quantification and subsequently corrupt the synthesized MTC reference images. Bloch equation-based numerical phantom studies and synthetic MRI analysis demonstrated that the proposed approach could correctly estimate water and semisolid macromolecule parameters, even with severe B0 and B1 inhomogeneities. CONCLUSION: The only-train-once deep-learning framework can improve the reconstruction accuracy of brain-tissue parameter maps and be further combined with any conventional MRF or CEST-MRF method.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Água , Mapeamento Encefálico , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
18.
Magn Reson Med ; 89(4): 1401-1417, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36441743

RESUMO

PURPOSE: Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments. METHODS: Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T. RESULTS: The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field. CONCLUSION: Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.


Assuntos
Imageamento por Ressonância Magnética , Software , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
19.
Magn Reson Med ; 89(1): 477-486, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36111357

RESUMO

PURPOSE: We aimed to improve B0 magnetic field homogeneity and minimize the interference between RF coils and local B0 shimming coils with few channel numbers. METHODS: To design and construct the prototype for B0 shimming of the rat brain, we first evaluated the interferences of single shimming loops on RF receiver loops. Then, B0 shimming of the whole rat brain was implemented using an optimization procedure. The positions and currents of the local shimming coils with channel numbers from 3 to 6 were optimized to improve shimming performance. Based on the simulation results, a 5-channel local shimming coil, combined with a 3-channel RF receiver coil, was constructed and evaluated by animal experiments. RESULTS: There was marginal SNR loss within 5% after integrating the local shimming coil into the RF receiver coil. With respect to the Siemens standard shims up to second order, the B0 inhomogeneity in one whole rat brain was reduced from 39.6 Hz to 24.7 Hz by using the local shimming coil. A large portion of the EPI distortions was recovered after using the 5-channel local shimming coil. The temporal SNR using the local shimming coil was higher than that using the Siemens standard shims up to second order, with an improvement of more than 24%. CONCLUSIONS: The local shimming coil can improve B0 magnetic field homogeneity despite minor effects on the RF coil and can benefit a variety of applications that are sensitive to B0 inhomogeneity. Nevertheless, EPI for rat brain is still very challenging.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Animais , Ratos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Encéfalo/diagnóstico por imagem , Neuroimagem
20.
Magn Reson Med ; 90(1): 103-116, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912496

RESUMO

PURPOSE: Aim of this study was to develop a reliable B1 mapping method for brain imaging based on vendor MR sequences available on clinical scanners. Correction procedures for B0 distortions and slice profile imperfections are proposed, together with a phantom experiment for deriving the approximate time-bandwidth-product (TBP) of the excitation pulse, which is usually not known for vendor sequences. METHODS: The double angle method was used, acquiring two gradient echo echo-planar imaging data sets with different excitation angles. A correction factor C (B1 , TBP, B0 ) was derived from simulations for converting double angle method signal quotients into bias-free B1 maps. In vitro and in vivo tests compare results with reference B1 maps based on an established in-house sequence. RESULTS: The simulation shows that C has a negligible B1 dependence, allowing for a polynomial approximation of C (TBP, B0 ). Signal quotients measured in a phantom experiment with known TBP reconfirm the simulation results. In vitro and in vivo B1 maps based on the proposed method, assuming TBP = 5.8 as derived from a phantom experiment, match closely the reference B1 maps. Analysis without B0 correction shows marked deviations in areas of distorted B0 , highlighting the importance of this correction. CONCLUSION: Double angle method-based B1 mapping was set up for vendor gradient echo-echo-planar imaging sequences, using a correction procedure for slice profile imperfections and B0 distortions. This will help to set up quantitative MRI studies on clinical scanners with release sequences, as the method does not require knowledge of the exact RF-pulse profiles or the use of in-house sequences.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Imagem Ecoplanar/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cabeça , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA