Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
2.
J Virol ; 98(7): e0049924, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953631

RESUMO

Tibroviruses are novel rhabdoviruses detected in humans, cattle, and arthropods. Four tibroviruses are known to infect humans: Bas-Congo virus (BASV), Ekpoma virus 1 (EKV-1), Ekpoma virus 2, and Mundri virus. However, since none of them has been isolated, their biological properties are largely unknown. We aimed to characterize the human tibrovirus glycoprotein (G), which likely plays a pivotal role in viral tropism and pathogenicity. Human tibrovirus Gs were found to share some primary structures and display 14 conserved cysteine residues, although their overall amino acid homology was low (29%-48%). Multiple potential glycosylation sites were found on the G molecules, and endoglycosidase H- and peptide-N-glycosidase F-sensitive glycosylation was confirmed. AlphaFold-predicted three-dimensional (3D) structures of human tibrovirus Gs were overall similar. Membrane fusion mediated by these tibrovirus Gs was induced by acidic pH. The low pH-induced conformational change that triggers fusion was reversible. Virus-like particles (VLPs) were produced by transient expression of Gs in cultured cells and used to produce mouse antisera. Using vesicular stomatitis Indiana virus pseudotyped with Gs, we found that the antisera to the respective tibrovirus VLPs showed limited cross-neutralizing activity. It was also found that human C-type lectins and T-cell immunoglobulin mucin 1 acted as attachment factors for G-mediated entry into cells. Interestingly, BASV-G showed the highest ability to utilize these molecules. The viruses infected a wide range of cell lines with preferential tropism for human-derived cells whereas the preference of EKV-1 was unique compared with the other human tibroviruses. These findings provide fundamental information to understand the biological properties of the human tibroviruses. IMPORTANCE: Human tibroviruses are poorly characterized emerging rhabdoviruses associated with either asymptomatic infection or severe disease with a case fatality rate as high as 60% in humans. However, the extent and burden of human infection as well as factors behind differences in infection outcomes are largely unknown. In this study, we characterized human tibrovirus glycoproteins, which play a key role in virus-host interactions, mainly focusing on their structural and antigenic differences and cellular tropism. Our results provide critical information for understanding the biological properties of these novel viruses and for developing appropriate preparedness interventions such as diagnostic tools, vaccines, and effective therapies.


Assuntos
Proteínas do Envelope Viral , Humanos , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Camundongos , Glicosilação , Internalização do Vírus , Tropismo Viral , Linhagem Celular , Mucina-1/metabolismo , Células HEK293 , Anticorpos Antivirais/imunologia , Sequência de Aminoácidos
3.
FASEB J ; 38(9): e23622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703029

RESUMO

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Assuntos
Endometriose , RNA Longo não Codificante , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Decídua/metabolismo , Decídua/patologia , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Smad , Adulto Jovem
4.
J Cell Mol Med ; 28(11): e18392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864705

RESUMO

Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/mortalidade , Glioblastoma/metabolismo , RNA Longo não Codificante/genética , Prognóstico , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Bases de Dados Genéticas , RNA Endógeno Competitivo
5.
Curr Issues Mol Biol ; 46(7): 6377-6389, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39057023

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a growing health concern due to its increasing prevalence worldwide. Metabolic homeostasis encompasses the stable internal conditions vital for efficient metabolism. This equilibrium extends to the intestinal microbiota, whose metabolic activities profoundly influence overall metabolic balance and organ health. The metabolites derived from the gut microbiota metabolism can be defined as microbiota-related co-metabolites. They serve as mediators between the gut microbiota and the host, influencing various physiological processes. The recent redefinition of the term MASLD has highlighted the metabolic dysfunction that characterize the disease. Metabolic dysfunction encompasses a spectrum of abnormalities, including impaired glucose regulation, dyslipidemia, mitochondrial dysfunction, inflammation, and accumulation of toxic byproducts. In addition, MASLD progression has been linked to dysregulation in the gut microbiota and associated co-metabolites. Short-chain fatty acids (SCFAs), hippurate, indole derivatives, branched-chain amino acids (BCAAs), and bile acids (BAs) are among the key co-metabolites implicated in MASLD progression. In this review, we will unravel the relationship between the microbiota-related metabolites which have been associated with MASLD and that could play an important role for developing effective therapeutic interventions for MASLD and related metabolic disorders.

6.
Funct Integr Genomics ; 24(2): 48, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436805

RESUMO

Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in various diseases has been verified. However, the underlying mechanism of CDKN2B-AS1 contributes to the development of allergic rhinitis (AR) remains unknown. To evaluate the impact of CDKN2B-AS1 on AR, BALB/c mice were sensitized by intraperitoneal injection of normal saline containing ovalbumin (OVA) and calmogastrin to establish an AR model. Nasal rubbing and sneezing were documented after the final OVA treatment. The concentrations of IgE, IgG1, and inflammatory elements were quantified using ELISA. Hematoxylin and eosin (H&E) staining and immunofluorescence were used to assess histopathological variations and tryptase expression, respectively. StarBase, TargetScan and luciferase reporter assays were applied to predict and confirm the interactions among CDKN2B-AS1, miR-98-5p, and SOCS1. CDKN2B-AS1, miR-98-5p, and SOCS1 levels were assessed by quantitative real-time PCR (qRT-PCR) or western blotting. Our results revealed that CDKN2B-AS1 was obviously over-expressed in the nasal mucosa of AR patients and AR mice. Down-regulation of CDKN2B-AS1 significantly decreased nasal rubbing and sneezing frequencies, IgE and IgG1 concentrations, and cytokine levels. Furthermore, down-regulation of CDKN2B-AS1 also relieved the pathological changes in the nasal mucosa, and the infiltration of eosinophils and mast cells. Importantly, these results were reversed by the miR-98-5p inhibitor, whereas miR-98-5p directly targeted CDKN2B-AS1, and miR-98-5p negatively regulated SOCS1 level. Our findings demonstrate that down-regulation of CDKN2B-AS1 improves allergic inflammation and symptoms in a murine model of AR through the miR-98-5p/SOCS1 axis, which provides new insights into the latent functions of CDKN2B-AS1 in AR treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Rinite Alérgica , Animais , Humanos , Camundongos , Regulação para Baixo , Imunoglobulina E , Imunoglobulina G , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/genética , RNA Longo não Codificante/genética , Espirro , Proteína 1 Supressora da Sinalização de Citocina/genética
7.
Mol Carcinog ; 63(3): 371-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975495

RESUMO

Long noncoding RNAs (lncRNAs) are crucial regulators of tumor-initiating cells (TICs) and hold particular importance in triple negative breast cancer (TNBC). Yet, the precise mechanisms by which TIC-associated lncRNAs influence TNBC remain unclear. Our research utilized The Cancer Genome Atlas Breast Cancer (BC) data set to identify prognostic lncRNAs. We then conducted extensive assays to explore their impact on the tumor-initiating phenotype of TNBC cells and the underlying mechanisms. Notably, we found that low expression of lncRNA SEMA3B-AS1 correlated with unfavorable survival in BC patients. SEMA3B-AS1 was also downregulated in TNBC and linked to advanced tumor stage. Functional experiments confirmed its role as a TIC-suppressing lncRNA, curtailing mammosphere formation, ALDH + TIC cell proportion, and impairing clonogenicity, migration, and invasion. Mechanistic insights unveiled SEMA3B-AS1's nuclear localization and interaction with MLL4 (mixed-lineage leukemia 4), triggering H3K4 methylation-associated transcript activation and thus elevating the expression of SEMA3B, a recognized tumor suppressor gene. Our findings emphasize SEMA3B-AS1's significance as a TNBC-suppressing lncRNA that modulates TIC behavior. This study advances our comprehension of lncRNA's role in TNBC progression, advocating for their potential as therapeutic targets in this aggressive BC subtype.


Assuntos
MicroRNAs , RNA Longo não Codificante , Semaforinas , Neoplasias de Mama Triplo Negativas , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , MicroRNAs/genética , Histona-Lisina N-Metiltransferase/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Glicoproteínas de Membrana/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Semaforinas/uso terapêutico
8.
Bipolar Disord ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043623

RESUMO

INTRODUCTION: Although there are several psychological theories on bipolar disorders (BD), the empirical evidence on these theories through experimental studies is still limited. The current study systematically reviews experimental methods used in studies on the main theories of BD: Reward Hypersensitivity Theory (RST) or Behavioral Activation System (BAS), Integrative Cognitive Model (ICM), Positive Emotion Persistence (PEP), Manic Defense theory (MD), and Mental Imagery (MI). The primary aim is to provide an overview of the used methods and to identify limitations and suggest areas of improvement. METHODS: A systematic search of six databases until October 2023 was conducted. Study selection involved two independent reviewers extracting data on experimental study design and methodology. RESULTS: A total of 84 experimental studies were reviewed. BAS and RST were the most frequently studied theories. The majority of these experimental studies focus on mechanisms of reward sensitivity. Other important elements of the reviewed theories, such as goal setting and-attainment, situation selection (avoidance or approach), activation, affective/emotional reactivity, and regulatory strategies, are understudied. Self-report and neuropsychological tasks are most often used, while mood induction and physiological measures are rarely used. CONCLUSION: There is a need for more consensus on the operationalization of psychological theories of mania. Standardization of test batteries could improve comparability among studies and foster a more systematic approach to experimental research. Research on affective (activated) states is still underrepresented in comparison with studies on trait vulnerabilities.

9.
J Adolesc ; 96(3): 580-597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37968846

RESUMO

INTRODUCTION: Parents try to prevent possible negative outcomes associated with gaming by setting rules on their adolescent's gaming behavior (i.e., restrictive mediation). Parents can use either more autonomy-supportive or more controlling styles to communicate those rules. Using a person-centered approach, this study aims to, first, identify profiles of parents' perceived degree of restrictive mediation in gaming and styles of communicating these rules (i.e., autonomy-supportive and controlling); second, to examine how adolescents in different profiles differ in terms of maladaptive gaming outcomes (i.e., problematic gaming, simulated, and online gambling); third, to investigate the moderating role of gaming frequency and adolescents' personality (i.e., behavioral inhibition system [BIS] sensitivity and behavioral activation system [BAS] sensitivity) in the associations between the parental profiles and the outcomes. METHODS: The study used quantitative, cross-sectional survey data from Belgian adolescents (N = 1651, mean age = 14.00 years, 51.2% boys), collected between November 2021 and February 2022 in schools. RESULTS: Cluster analysis yielded four profiles of perceived restrictive mediation: an exclusively controlling one, an autonomy-supportive one, one where parents used a perceived mix of both communication styles, and one where there was an overall perceived lack of restrictive mediation. Adolescents in the controlling profile displayed the most maladaptive outcomes. Some of the associations between the parental profiles and the outcomes were stronger for more frequent gamers and for adolescents scoring higher on both BIS and BAS sensitivity. CONCLUSION: Associations between the parental profiles and gaming outcomes were theoretically meaningful, yet small in terms of effect size.


Assuntos
Jogo de Azar , Jogos de Vídeo , Masculino , Adolescente , Humanos , Feminino , Poder Familiar , Estudos Transversais , Relações Pais-Filho , Pais
10.
Hum Factors ; 66(5): 1450-1474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840518

RESUMO

OBJECTIVE: The present work explores how the horizontal viewing angle of a virtual character's face influences perceptions of credibility and approachability. BACKGROUND: When encountering virtual characters, people rely both on credibility and approachability judgments to form a first impression of the depicted virtual character. Research shows that certain perceptions are preferred either on frontal or tilted faces, but not how approachability or credibility judgments relate to horizontal viewing angles in finer granularity between 0° and 45°. METHOD: 52 participants performed a two-alternative forced choice (2AFC) task rating 240 pairwise comparisons of 20 virtual character faces shown in four horizontal viewing angles (0°, 15°, 30°, and 45°) on approachability and credibility. They also rated scales on individual differences based on the BIS-BAS framework (behavioral inhibition system, drive, and reward responsiveness), self-esteem, and personality traits (neuroticism, loneliness). RESULTS: Both approachability and credibility were negatively related to the horizontal viewing angle, but the negative relationship was less pronounced for approachability. Notably, 15° tilted faces were associated with higher approachability than frontal faces by people scoring high in reward responsiveness, drive, and self-esteem, and scoring low in neuroticism and loneliness. CONCLUSION: Our findings highlight the conditions under which showing a virtual character's face is preferred in a horizontally 15° tilted over a frontal position. APPLICATION: The differential impact of the horizontal viewing angle on approachability and credibility should be considered when displaying virtual character faces.


Assuntos
Individualidade , Humanos
11.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612469

RESUMO

Dietary methionine restriction (MetR) offers an integrated set of beneficial health effects, including delaying aging, extending health span, preventing fat accumulation, and reducing oxidative stress. This study aimed to investigate whether MetR exerts entero-protective effects by modulating intestinal flora, and the effect of MetR on plasma metabolites in rats. Rats were fed diets containing 0.86% methionine (CON group) and 0.17% methionine (MetR group) for 6 weeks. Several indicators of inflammation, gut microbiota, plasma metabolites, and intestinal barrier function were measured. 16S rRNA gene sequencing was used to analyze the cecal microbiota. The MetR diet reduced the plasma and colonic inflammatory factor levels. The MetR diet significantly improved intestinal barrier function by increasing the mRNA expression of tight junction proteins, such as zonula occludens (ZO)-1, claudin-3, and claudin-5. In addition, MetR significantly increased the levels of short-chain fatty acids (SCFAs) by increasing the abundance of SCFAs-producing Erysipclotxichaceae and Clostridium_sensu_stricto_1 and decreasing the abundance of pro-inflammatory bacteria Proteobacteria and Escherichia-Shigella. Furthermore, MetR reduced the plasma levels of taurochenodeoxycholate-7-sulfate, taurocholic acid, and tauro-ursodeoxycholic acid. Correlation analysis identified that colonic acetate, total colonic SCFAs, 8-acetylegelolide, collettiside I, 6-methyladenine, and cholic acid glucuronide showed a significant positive correlation with Clostridium_sensu_stricto_1 abundance but a significant negative correlation with Escherichia-Shigella and Enterococcus abundance. MetR improved gut health and altered the plasma metabolic profile by regulating the gut microbiota in rats.


Assuntos
Microbioma Gastrointestinal , Metionina , Animais , Ratos , RNA Ribossômico 16S/genética , Racemetionina , Metabolômica
12.
Cell Tissue Res ; 394(3): 455-469, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907763

RESUMO

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Lesões do Sistema Vascular , Animais , Camundongos , Movimento Celular , Proliferação de Células , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Hiperplasia , Insulina/farmacologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
13.
FASEB J ; 36(8): e22398, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792869

RESUMO

Conjugated bile acids (CBAs) play major roles in hepatic gene regulation via nuclear S1P-inhibited histone deacetylase (HDACs). Gut microbiota modifies bile acid pool to generate CBAs and then CBAs returned to liver to regulate hepatic genes, fatty liver, and non-alcoholic fatty liver disease (NAFLD). However, it is not yet known how the gut microbiota was modified under the environment of inflammatory bowel disease (IBD). Here, we revealed that aberrant intestinal sphingosine kinases (SphKs), a major risk factor of IBD, modified gut microbiota by increasing the proportions of Firmicutes and Verrucomicrobia, which were associated with the increase in CBAs. When exposed to a high-fat diet (HFD), sphingosine kinases 2 knockout (SphK2KO) mice developed more severity of intestinal inflammation and hepatic steatosis than their wild-type (WT) littermates. Due to knockdown of nuclear SphK2, Sphk2KO mice exhibited an increase in sphingosine kinases 1 (SphK1) and sphingosine-1-phosphate (S1P) in intestinal epithelial cells. Therefore, the microbiota was modified in the environment of the SphK1/S1P-induced IBD. 16S rDNA amplicon sequencing of cecal contents indicated an increase of Firmicutes and Verrucomicrobia. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) measured an increase in CBAs, including taurocholic acid (TCA), taurodeoxycholic acid (TDCA), and glycocholic acid (GCA), in cecal contents and liver tissues of Sphk2KO mice. These CBAs accumulated in the liver promoted hepatic steatosis through downregulating the acetylation of H3K9, H3K14, H3K18 and H3K27 due to the CBAs-S1PR2-nuclear SphK2-S1P signaling pathway was blocked in HFD-SphK2KO mice. In summary, intestinal aberrant sphingolipid metabolism developed hepatic steatosis through the increase in CBAs associated with an increase in Firmicutes and Verrucomicrobia.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos e Sais Biliares , Cromatografia Líquida , Firmicutes , Metaboloma , Camundongos , Esfingolipídeos , Esfingosina , Espectrometria de Massas em Tandem , Verrucomicrobia
14.
Nanotechnology ; 34(46)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37567162

RESUMO

The structural evolution of black arsenic-phosphorous (b-AsxP1-x) alloys with varying arsenic concentrations was investigated under hydrostatic pressure usingin situRaman spectroscopy. High-pressure experiments were conducted using a diamond anvil cell, which revealed pressure-induced shifts in vibrational modes associated with P-P bonds (A1g,A2g,B2g), As-As bonds (A1g,A2g,B2g), and As-P bonds in b-AsxP1-xalloys. Two distinct pressure regimes were observed. In the first regime (region I), all vibrational modes exhibited a monotonic upshift, indicating phonon hardening due to hydrostatic pressure. In the second regime (region II), As0.4P0.6and As0.6P0.4alloys displayed a linear blueshift (or negligible change in some modes) at a reduced rate, suggesting local structural reorganization with less compression on the bonds. Notably, the alloy with the highest As concentration, As0.8P0.2, exhibited anomalous behavior in the second pressure regime, with a downward shift observed in all As-As and As-P Raman modes (and some P-P modes). Interestingly, the emergence of new peaks corresponding to theEgmode andA1gmode of the gray-As phase was observed in this pressure range, indicating compressive strain-induced structural changes. The anomalous change in region II confirms the formation of a new local structure, characterized by elongation of the P-P, As-As, and As-P bonds along the zigzag direction within the b-AsxP1-xphase, possibly near the grain boundary. Additionally, a gray-As phase undergoes compressive structural changes. This study underscores the significance of pressure in inducing structural transformations and exploring novel phases in two-dimensional materials, including b-AsxP1-xalloys.

15.
BMC Infect Dis ; 23(1): 568, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653506

RESUMO

BACKGROUND: There is no doubt about the cardiovascular complications of coronavirus disease 2019 (COVID-19). Several genetic studies have demonstrated an association between genetic variants in a region on chromosome 9p21 and in a region on chromosome 16q22 with myocardial infarction (MI) and atrial fibrillation (AF) accompanied by cerebral infarction (CI), respectively. OBJECTIVES: MI and CI susceptibility in patients with CDKN2B-AS1 and ZFHX3 polymorphisms, respectively, may have an effect on COVID-19 severity. We aimed to investigate whether there is an association between the cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) rs1333049 and zinc finger homeobox 3 (ZFHX3) rs2106261 single nucleotide polymorphisms (SNPs) and the degree of COVID-19 severity. SUBJECTS AND METHODS: This current work was carried out on 360 subjects. They were classified into three groups: 90 severe COVID-19 cases, 90 moderate COVID-19 cases and 180 age- and gender-matched healthy controls. All subjects underwent genotyping of CDKN2B-AS1 (rs1333049) and ZFHX3 (rs2106261) by real-time PCR. RESULTS: The frequency of G/C in CDKN2B-AS1 (rs1333049) was higher in severe and moderate COVID-19 patients than in controls (71.1% and 53.3% vs. 37.8%). The frequency of the C/C of CDKN2B-AS1 (rs1333049) was higher in moderate COVID-19 patients than in controls (26.7% vs. 13.3%). There were no significant differences regarding genotype frequency and allelic distribution of ZFHX3 (rs2106261) between COVID-19 patients and healthy controls. CONCLUSION: CDKN2B-AS1 (rs1333049) gene polymorphism may play a role in determining the degree of COVID-19 severity. Further studies on its effect on cyclins and cyclin-dependent kinases (CDKs) [not measured in our study] may shed light on new treatment options for COVID-19.


Assuntos
COVID-19 , Infarto do Miocárdio , Humanos , Inibidor de Quinase Dependente de Ciclina p15 , Genes Homeobox , COVID-19/genética , Polimorfismo de Nucleotídeo Único , Infarto Cerebral , Dedos de Zinco
16.
Exp Cell Res ; 419(1): 113268, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750242

RESUMO

As CDKN2B-AS1 is demonstrated to exert promotive effects on thyroid cancer (TC), this research aims to investigate the role of cancer stem cell-like cells (CSCs)-derived exosomal CDKN2B-AS1 in TC and the underlying regulatory mechanism. Specifically, CDKN2B expression and the correlation of CDKN2B with CDKN2B-AS1 in TC were determined via bioinformatics analysis and further verified by qRT-PCR. After transfection or co-culture with CSCs-derived exosomes, viability, migration, and invasion of TPC-1 and SW579 cells were evaluated by CCK-8, wound healing, and transwell assays, respectively. The uptake of exosomes by TC cells was detected by PKH67 labeling. In vivo tumor formation and metastasis models were established. Tumor volume and weight were calculated. Metastasis loci in lung tissues were observed by hematoxylin-eosin staining. The expression levels of CDKN2B-AS1, CDKN2B, and epithelial-mesenchymal transition- and TGF-ß1/Smad2/3 signaling-related factors were detected by qRT-PCR or Western blot. Concretely, CDKN2B and CDKN2B-AS1 were highly expressed in TC, and there was a positive correlation between the two. In addition, CDKN2B-AS1 promoted the translation and stability of CDKN2B. Furthermore, CDKN2B-AS1 was highly expressed in CSCs and CSCs-derived exosomes which could be absorbed by TC cells. CDKN2B silencing inhibited viability, migration, invasion, protein levels of CDKN2B, N-cadherin and Vimentin, and TGF-ß1/Smad2/3 signaling, while promoting E-cadherin expression in TC cells. CSCs-derived exosomal CDKN2B-AS1 did oppositely and reversed the effects of CDKN2B silencing on TC cells. CDKN2B silencing impeded tumor growth and metastasis in TC mice, while TGF-ß1 performed inversely and impaired the effects of CDKN2B silencing. Collectively, CSCs-derived exosomal CDKN2B-AS1 stabilizes CDKN2B to promote growth and metastasis of TC via TGF-ß1/Smad2/3 signaling.


Assuntos
RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Animais , Caderinas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Camundongos , Células-Tronco Neoplásicas , Fator de Crescimento Transformador beta1
17.
Subst Use Misuse ; 58(6): 787-795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943012

RESUMO

Background: Gray's original Reinforcement Sensitivity Theory (RST) posits that an oversensitive behavioral inhibition system (BIS) may increase risk for negative-reinforcement-motivated drinking, given its role in anxiety. However, existing data provides mixed support for the BIS-alcohol use association. The inconsistent evidence is not surprising, as the revised RST predicts that the behavioral approach system (BAS) should moderate the effect of the BIS on alcohol use. A strong BAS is thought to bring attention to the negatively reinforcing effects of alcohol, leading to problem drinking among those with a strong BIS. While emerging results support this interaction, we still have much to learn about the mechanisms underlying this effect on alcohol use. Accordingly, we examined motives for alcohol use as mediators of the joint associations of the BIS and the BAS on drinking behaviors. Specifically, our central hypothesis was that individuals with a strong BIS and a strong BAS would endorse increased negative reinforcement motives for drinking (coping and conformity motives), which in turn would predict heavy drinking and alcohol problems. Method: Participants (N=346; 195 women) completed study measures as part of the baseline assessment for a larger study. Results: Overall, results partially supported the hypotheses. Mediated moderation analyses showed that the indirect effect of the BIS on alcohol problems, through coping and conformity motives, was strongest at high levels of the BAS. This effect was not supported for alcohol use. Conclusions: Our findings suggest that clinical interventions should target coping and conformity reasons for drinking among anxious, reward responsive, young adults.


Assuntos
Consumo de Bebidas Alcoólicas , Transtornos Relacionados ao Uso de Álcool , Humanos , Feminino , Adulto Jovem , Motivação , Comportamento Social , Adaptação Psicológica
18.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003316

RESUMO

ANRIL (Antisense Noncoding RNA in the INK4 Locus), also named CDKN2B-AS1, is a long non-coding RNA with outstanding functions that regulates genes involved in atherosclerosis development. ANRIL genotypes and the expression of linear and circular isoforms have been associated with coronary artery disease (CAD). The CDKN2A and the CDKN2B genes at the CDKN2A/B locus encode the Cyclin-Dependent Kinase inhibitor protein (CDKI) p16INK4a and the p53 regulatory protein p14ARF, which are involved in cell cycle regulation, aging, senescence, and apoptosis. Abnormal ANRIL expression regulates vascular endothelial growth factor (VEGF) gene expression, and upregulated Vascular Endothelial Growth Factor (VEGF) promotes angiogenesis by activating the NF-κB signaling pathway. Here, we explored associations between determinations of the linear, circular, and linear-to-circular ANRIL gene expression ratio, CDKN2A, VEGF and its receptor kinase insert domain-containing receptor (KDR) and cardiovascular risk factors and all-cause mortality in high-risk coronary patients before they undergo coronary artery bypass grafting surgery (CABG). We found that the expression of ANRIL isoforms may help in the prediction of CAD outcomes. Linear isoforms were correlated with a worse cardiovascular risk profile while the expression of circular isoforms of ANRIL correlated with a decrease in oxidative stress. However, the determination of the linear versus circular ratio of ANRIL did not report additional information to that determined by the evaluation of individual isoforms. Although the expressions of the VEFG and KDR genes correlated with a decrease in oxidative stress, in binary logistic regression analysis it was observed that only the expression of linear isoforms of ANRIL and VEGF significantly contributed to the prediction of the number of surgical revascularizations.


Assuntos
Doença da Artéria Coronariana , RNA Longo não Codificante , Humanos , Doença da Artéria Coronariana/genética , Fator A de Crescimento do Endotélio Vascular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , NF-kappa B/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Isoformas de Proteínas/genética
19.
Cleft Palate Craniofac J ; 60(9): 1113-1117, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35384777

RESUMO

This study aimed to evaluate the chronological age range associated with each stage of spheno-occipital synchondrosis (SOS) fusion in patients with cleft lip and palate compared to the noncleft group, using cone-beam computed tomography (CBCT) images.In this study, the degree of SOS fusion was assessed using a 4-stage scoring system on CBCT images of 190 individuals (92 patients with cleft lip and palate, 98 noncleft individuals). A χ2 test was performed to assess the correlation between age and fusion stage. The independent sample t tests were used to evaluate the differences in the mean values of the samples of each group and each sex, as well as the mean value of each stage (P < .05).The results showed that there was no significant difference in the timing of the SOS fusion stages between the patients with cleft palate and the noncleft group. Although the fusion process of SOS begins about one year earlier in females, the complete ossification occurs at the mean age of 18.5 for both sexes in the experimental group and the mean age of 19.0 in the noncleft group.The present study found no differences in the fusion stages of the spheno-occipital synchondrosis between patients with cleft lip and palate and healthy individuals.


Assuntos
Fenda Labial , Fissura Palatina , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Fenda Labial/diagnóstico por imagem , Osso Esfenoide/diagnóstico por imagem , Osso Occipital/diagnóstico por imagem , Irã (Geográfico) , Fissura Palatina/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos
20.
Psychiatr Q ; 94(4): 605-616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610629

RESUMO

Internet addiction (IA), one of the behavioral addictions, is also related to impulsivity. Although studies on its etiology and risks continue, the number of studies is limited. In this study, we aimed to assess the roles of behavioral systems, emotional regulation (ER), and impulsivity in the development of IA in adolescents and also to assess the relationship between all these clinical parameters and brain-derived neurotrophic factor (BDNF) and neuropeptide Y (NPY). Forty-two adolescents with IA and 30 healthy controls (ages 12 -17) were included in the study. Self-reported measures included the Internet Addiction Scale. (IAS), Behavioral Activation and Behavioral Inhibition Scale (BAS/BIS), Barratt. Impulsiveness Scale-11 (BIS-11), and Difficulties in Emotion Regulation Scale-16 (DERS-16) were used for the assessment of the participants. The levels of plasma brain BDNF and NPY were evaluated with the ELISA method. BAS/BIS subscale scores, BIS-11, and DERS-16 scale total scores were found to be statistically significantly higher, while BDNF and NPY levels were found to be lower in adolescents with IA compared to the healthy controls. IA severity was not found to correlate with both BDNF and NPY. IA was found to be more related to BIS than to BAS. There is a need for further studies evaluating developmental features and possible diagnostic biomarkers that may be associated with IA in adolescents.


Assuntos
Comportamento Aditivo , Regulação Emocional , Humanos , Adolescente , Fator Neurotrófico Derivado do Encéfalo , Neuropeptídeo Y , Transtorno de Adição à Internet , Comportamento Aditivo/psicologia , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA