Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 459: 116344, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526072

RESUMO

P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP/ABCG2) are efflux multidrug resistance (MDR) transporters localized at the syncytiotrophoblast barrier of the placenta and protect the conceptus from drug and toxin exposure throughout pregnancy. Infection is an important modulator of MDR expression and function. This review comprehensively examines the effect of infection on the MDR transporters, P-gp and BCRP in the placenta. Infection PAMPs such as bacterial lipopolysaccharide (LPS) and viral polyinosinic-polycytidylic acid (poly I:C) and single-stranded (ss)RNA, as well as infection with Zika virus (ZIKV), Plasmodium berghei ANKA (modeling malaria in pregnancy - MiP) and polymicrobial infection of intrauterine tissues (chorioamnionitis) all modulate placental P-gp and BCRP at the levels of mRNA, protein and or function; with specific responses varying according to gestational age, trophoblast type and species (human vs. mice). Furthermore, we describe the expression and localization profile of Toll-like receptor (TLR) proteins of the innate immune system at the maternal-fetal interface, aiming to better understand how infective agents modulate placental MDR. We also highlight important gaps in the field and propose future research directions. We conclude that alterations in placental MDR expression and function induced by infective agents may not only alter the intrauterine biodistribution of important MDR substrates such as drugs, toxins, hormones, cytokines, chemokines and waste metabolites, but also impact normal placentation and adversely affect pregnancy outcome and maternal/neonatal health.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Distribuição Tecidual , Proteínas de Neoplasias/genética , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/metabolismo
2.
FASEB J ; 36(4): e22245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262963

RESUMO

Antenatal synthetic glucocorticoids (sGCs) are a life-saving treatment in managing pre-term birth. However, off-target effects of sGCs can impact blood-brain barrier (BBB) drug transporters essential for fetal brain protection, including P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex-dependent manner. Thus, the objective of this study was to determine the long-term impact of a single or multiple courses of betamethasone on P-gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post-natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P-gp/Abcb1 and BCRP/Abcg2. P-gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P-gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P-gp function in males compared to females (p = .055). Reduced P-gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P-gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.


Assuntos
Barreira Hematoencefálica , Glucocorticoides , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Betametasona/metabolismo , Betametasona/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Cobaias , Masculino , Proteínas de Neoplasias/metabolismo , Gravidez
3.
Pharm Res ; 40(8): 1885-1899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344602

RESUMO

BACKGROUND & PURPOSE: Heroin (diacetylmorphine; diamorphine) is a highly addictive opioid prodrug. Heroin prescription is possible in some countries for chronic, treatment-refractory opioid-dependent patients and as a potent analgesic for specific indications. We aimed to study the pharmacokinetic interactions of heroin and its main pharmacodynamically active metabolites, 6-monoacetylmorphine (6-MAM) and morphine, with the multidrug efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2 using wild-type, Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice. METHODS & RESULTS: Upon subcutaneous (s.c.) heroin administration, its blood levels decreased quickly, making it challenging to detect heroin even shortly after dosing. 6-MAM was the predominant active metabolite present in blood and most tissues. At 10 and 30 min after heroin administration, 6-MAM and morphine brain accumulation were increased about 2-fold when mouse (m)Abcb1a/1b and mAbcg2 were ablated. Fifteen minutes after direct s.c. administration of an equimolar dose of 6-MAM, we observed good intrinsic brain penetration of 6-MAM in wild-type mice. Still, mAbcb1 limited brain accumulation of 6-MAM and morphine without affecting their blood exposure, and possibly mediated their direct intestinal excretion. A minor contribution of mAbcg2 to these effects could not be excluded. CONCLUSIONS: We show that mAbcb1a/1b can limit 6-MAM and morphine brain exposure. Pharmacodynamic behavioral/postural observations, while non-quantitative, supported moderately increased brain levels of 6-MAM and morphine in the knockout mouse strains. Variation in ABCB1 activity due to genetic polymorphisms or environmental factors (e.g., drug interactions) might affect 6-MAM/morphine exposure in individuals, but only to a limited extent.


Assuntos
Heroína , Morfina , Camundongos , Animais , Heroína/metabolismo , Heroína/farmacologia , Morfina/metabolismo , Analgésicos Opioides/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Derivados da Morfina/metabolismo , Derivados da Morfina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Camundongos Knockout
4.
J Vet Pharmacol Ther ; 46(3): 185-194, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36448496

RESUMO

Monepantel (MNP), a novel anthelmintic drug from amino-acetonitrile derivatives, is a substrate for breast cancer resistance protein (BCRP). BCRP-mediated milk secretion of drugs can be altered by isoflavones. In this study, we aimed to show how soy isoflavones and BCRP inhibitors genistein (GEN) and daidzein (DAI) can modulate the secretion of MNP into milk. Moreover, we observed that the expression of BCRP in the lactating mammary gland of sheep was significantly higher than in non-lactating sheep using Western blot analysis. These properties of MNP and MNPSO2 (monepantel sulfone, the major active metabolite of MNP), identified as a BCRP substrate in determining the interaction with BCRP, were examined by vesicular transport (VT) inhibition assays. In pharmacokinetic studies, we demonstrated the transport of MNP into milk in three experimental groups: G1 fed standard forage; G2 fed soy-enriched forage; G3 fed standard forage paired with orally administered exogenous GEN and DAI. The concentrations of MNP and MNPSO2 were analyzed by high-performance liquid chromatography. Compared to the control group (3.27 ± 1.13 vs. 5.46 ± 2.23), the AUC (0-840 h) milk/plasma ratio decreased by 40% in the soy-enriched diet group. The concentrations of GEN and DAI were determined using liquid chromatography coupled with tandem mass spectrometry in soy. A VT inhibition assay was conducted to determine the IC50 values for MNP and MNPSO2 as BCRP inhibitors. This study showed that milk excretion of a BCRP substrate, such as monepantel, can be diminished by the presence of isoflavones in the diet.


Assuntos
Isoflavonas , Leite , Animais , Ovinos , Leite/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Isoflavonas/análise , Isoflavonas/farmacologia , Genisteína/farmacologia , Genisteína/análise
5.
Pharmacol Res ; 178: 105954, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34700018

RESUMO

Abemaciclib is the third cyclin-dependent kinase (CDK) 4/6 inhibitor approved for the treatment of breast cancer and currently under investigation for other malignancies, including brain cancer. Primarily CYP3A4 metabolizes abemaciclib, forming three active metabolites (M2, M20 and M18) that are likely relevant for abemaciclib efficacy and toxicity. We investigated the impact of ABCB1 (P-gp), ABCG2 (BCRP) and CYP3A on the pharmacokinetics and tissue distribution of abemaciclib and its metabolites using genetically modified mice. In vitro, abemaciclib was efficiently transported by hABCB1 and mAbcg2, and slightly by hABCG2, but the active metabolites were transported even better. Upon oral administration of 10 mg/kg abemaciclib, absence of Abcg2 and especially Abcb1a/1b significantly increased the plasma AUC0-24 h and Cmax of M2 and M18. Furthermore, the relative brain penetration of abemaciclib, M2 and M20 was dramatically increased by 25-, 4- and 60-fold, respectively, in Abcb1a/1b;Abcg2-/- mice, and to a lesser extent in single Abcb1a/1b- or Abcg2-deficient mice. The recovery of all active compounds in the small intestine content was profoundly reduced in Abcb1a/1b;Abcg2-/- mice, with smaller effects in single Abcb1a/1b-/- and Abcg2-/- mice. Our results indicate that Abcb1a/1b and Abcg2 cooperatively and profoundly limit the brain penetration of abemaciclib and its active metabolites, and likely also participate in their hepatobiliary or direct intestinal elimination. Moreover, transgenic human CYP3A4 drastically reduced the abemaciclib plasma AUC0-24 h and Cmax by 7.5- and 5.6-fold, respectively, relative to Cyp3a-/- mice. These insights may help to optimize the clinical development of abemaciclib, especially for the treatment of brain malignancies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Aminopiridinas , Benzimidazóis , Citocromo P-450 CYP3A , Proteínas de Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo
6.
Pharmacol Res ; 172: 105850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450308

RESUMO

BACKGROUND AND PURPOSE: Pralsetinib is an FDA-approved oral small-molecule inhibitor for treatment of rearranged during transfection (RET) proto-oncogene fusion-positive non-small cell lung cancer. We investigated how the efflux transporters ABCB1 and ABCG2, the SLCO1A/1B uptake transporters and the drug-metabolizing enzyme CYP3A influence pralsetinib pharmacokinetics. EXPERIMENTAL APPROACH: In vitro, transepithelial pralsetinib transport was assessed. In vivo, pralsetinib (10 mg/kg) was administered orally to relevant genetically modified mouse models. Pralsetinib concentrations in cell medium, plasma samples and organ homogenates were measured using liquid chromatography-tandem mass spectrometry. KEY RESULTS: Pralsetinib was efficiently transported by human (h)ABCB1 and mouse (m)Abcg2, but not hACBG2. In vivo, mAbcb1a/1b markedly and mAbcg2 slightly limited pralsetinib brain penetration (6.3-and 1.8-fold, respectively). Testis distribution showed similar results. Abcb1a/1b;Abcg2-/- mice showed 1.5-fold higher plasma exposure, 23-fold increased brain penetration, and 4-fold reduced recovery of pralsetinib in the small intestinal content. mSlco1a/1b deficiency did not affect pralsetinib oral availability or tissue exposure. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar boosted pralsetinib plasma exposure (1.3-fold) and brain penetration (19.6-fold) in wild-type mice. Additionally, pralsetinib was a modest substrate of mCYP3A, but not of hCYP3A4, which did not noticeably restrict the oral availability or tissue distribution of pralsetinib. CONCLUSIONS AND IMPLICATIONS: SLCO1A/1B and CYP3A4 are unlikely to affect the pharmacokinetics of pralsetinib, but ABCG2 and especially ABCB1 markedly limit its brain and testis penetration, as well as oral availability. These effects are mostly reversed by oral coadministration of the ABCB1/ABCG2 inhibitor elacridar. These insights may be useful in the further clinical development of pralsetinib.


Assuntos
Antineoplásicos/farmacocinética , Transportadores de Ânions Orgânicos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirazóis/farmacocinética , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Animais , Antineoplásicos/sangue , Disponibilidade Biológica , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Feminino , Masculino , Camundongos Knockout , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Inibidores de Proteínas Quinases/sangue , Pirazóis/sangue , Piridinas/sangue , Pirimidinas/sangue , Testículo/metabolismo
7.
Mol Cancer ; 19(1): 10, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952518

RESUMO

BACKGROUND: PI3K/AKT is a vital signaling pathway in humans. Recently, several PI3K/AKT inhibitors were reported to have the ability to reverse cancer multidrug resistance (MDR); however, specific targets in the PI3K/AKT pathways and the mechanisms associated with MDR have not been found because many of the inhibitors have multiple targets within a large candidate protein pool. AKT activation is one presumed mechanism by which MDR develops during cancer treatment. METHODS: The effects of inhibiting PI3K 110α and 110ß by BAY-1082439 treatment and CRISPR/Cas9 knockout were examined to determine the possible functions of BAY-1082439 and the roles of PI3K 110α and 110ß in the reversal of MDR that is mediated by the downregulation of P-gp and BCRP. Inhibition of AKT with GSK-2110183 showed that the downregulation of P-gp and BCRP is independent of generalized AKT inactivation. Immunofluorescence, immunoprecipitation, MTT, flow cytometry and JC-1 staining analyses were conducted to study the reversal of MDR that is mediated by P-gp and BCRP in cancer cells. An ATPase assay and a structural analysis were also used to analyze the potential mechanisms by which BAY-1082439 specifically targets PI3K 110α and 110ß and nonspecifically influences P-gp and BCRP. RESULTS: By inhibiting the activation of the PI3K 110α and 110ß catalytic subunits through both the administration of BAY-1082439 and the CRISPR/Cas9 deletion of Pik3ca and Pik3cb, the ATP-binding cassette transporters P-gp/ABCB1 and BCRP/ABCG2 were downregulated, thereby reestablishing the drug sensitivity of human epidermoid carcinoma and non-small cell lung cancer (NSCLC) MDR cells. Inhibition of AKT did not reverse the MDR mediated by P-gp or BCRP. The ABC family proteins and AKT may play MDR-enhancing roles independently. CONCLUSIONS: The reversal of the dual functions of ABC-transporter-mediated and AKT-activation-enhanced MDR through the inhibition or knockout of PI3K 110α or 110ß promises to improve current strategies based on combined drug treatments to overcome MDR challenges.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Células Tumorais Cultivadas
8.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008107

RESUMO

The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Plexo Corióideo/metabolismo , Transportador de Glucose Tipo 1/genética , Proteínas de Neoplasias/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Encéfalo/metabolismo , Plexo Corióideo/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Epitélio/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Transportador 1 de Glucose-Sódio/genética , Ácido Úrico/metabolismo
9.
Chembiochem ; 20(2): 210-220, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30187992

RESUMO

3',4',7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3',4'-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50 ). Of the synthesized compounds, the reversal effect of 5-hydroxy-3',4',7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3',4',7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(ß-glucosyloxy)-5-hydroxy-3',4'-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01-10 µm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 µm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Flavonas/síntese química , Flavonas/química , Humanos , Células K562 , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Biochim Biophys Acta Biomembr ; 1860(5): 973-980, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29317200

RESUMO

Hyperuricemia has been recognized as an independent risk factor for cardiovascular disease. Urate stimulates NADPH oxidase and induces production of reactive oxygen species (ROS); consequently, intracellular urate accumulation can induce oxidative stress leading to endothelial dysfunction. Here, we studied the mechanism involved, using human umbilical vascular endothelial cells (HUVEC) as a model. Pretreatment with 15 mg/dL unlabeled uric acid (corresponding to hyperuricemia) resulted in increased uptake of [14C]uric acid at steady-state by HUVEC, whereas pretreatment with 5 mg/dL uric acid (in the normal serum concentration range) did not. However, the initial uptake rate of [14C]uric acid was not affected by uric acid at either concentration. These results suggest that efflux transport of uric acid is decreased under hyperuricemic conditions. We observed a concomitant decrease of phosphorylated endothelial nitric oxide synthase. Plasma membrane expression of breast cancer resistance protein (BCRP), a uric acid efflux transporter, was decreased under hyperuricemia, though the total cellular expression of BCRP remained constant. Uric acid did not affect expression of another uric acid efflux transporter, multidrug resistance associated protein 4 (MRP4). Moreover, phosphorylation of Akt, which regulates plasma membrane localization of BCRP, was decreased. These uric acid-induced changes of BCRP and Akt were reversed in the presence of the antioxidant N-acetylcysteine. These results suggest that in hyperuricemia, uric acid-induced ROS generation inhibits Akt phosphorylation, causing a decrease in plasma membrane localization of BCRP, and the resulting decrease of BCRP-mediated efflux leads to increased uric acid accumulation and dysregulation of endothelial function.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiperuricemia/genética , Hiperuricemia/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ácido Úrico/metabolismo , Antioxidantes/farmacologia , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Biochim Biophys Acta ; 1849(3): 317-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25615818

RESUMO

Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Epidermal growth factor receptor (EGFR) pathway activation also led to an increase in p-CREB and in BCRP promoter reporter activity via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound p-CREB by a point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in several human cancer cell lines following activation of multiple cancer-relevant signaling pathways.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , AMP Cíclico/genética , Receptores ErbB/genética , Proteínas de Neoplasias/genética , Transcrição Gênica , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Androgênios/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Receptores ErbB/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosforilação , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Mol Pharm ; 13(8): 2631-40, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27347605

RESUMO

Protein expression levels of drug-metabolizing enzymes and transporters in human jejunal tissues excised from morbidly obese subjects during gastric bypass surgery were evaluated using quantitative targeted absolute proteomics. Protein expression levels of 15 cytochrome P450 (CYP) enzymes, 10 UDP-glucuronosyltransferase (UGT) enzymes, and NADPH-P450 reductase (P450R) in microsomal fractions from 28 subjects and 49 transporters in plasma membrane fractions from 24 of the same subjects were determined using liquid chromatography-tandem mass spectrometry. Based on average values, UGT1A1, UGT2B15, UGT2B17, SGLT1, and GLUT2 exhibited high expression levels (over 10 fmol/µg protein), though UGT2B15 expression was detected at a high level in only one subject. CYP2C9, CYP2D6, CYP3A5, UGT1A6, P450R, ABCG2, GLUT5, PEPT1, MCT1, 4F2 cell-surface antigen heavy chain (4F2hc), LAT2, OSTα, and OSTß showed intermediate levels (1-10 fmol/µg protein), and CYP1A1, CYP1A2, CYP1B1, CYP2C18, CYP2C19, CYP2J2, CYP3A7, CYP4A11, CYP51A1, UGT1A3, UGT1A4, UGT1A8, UGT2B4, ABCC1, ABCC4, ABCC5, ABCC6, ABCG8, TAUT, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OCTN1, CNT2, PCFT, MCT4, GLUT4, and SLC22A18 showed low levels (less than 1 fmol/µg protein). The greatest interindividual difference (364-fold) was detected for UGT2B17. However, differences in expression levels of other quantified UGTs (except UGT2B15 and UGT2B17), CYPs (except CYP1A1 and CYP3A5), and P450R, and all quantified transporters, were within 10-fold. Expression levels of CYP1A2 and GLUT4 were significantly correlated with body-mass index. The levels of 4F2hc showed significant gender differences. Smokers showed increased levels of UGT1A1 and UGT1A3. These findings provide a basis for understanding the changes in molecular mechanisms of jejunal metabolism and transport, as well as their interindividual variability, in morbidly obese patients.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Jejuno/metabolismo , Obesidade Mórbida/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Feminino , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Humanos , Técnicas In Vitro , Intestino Delgado/metabolismo , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportador 1 de Peptídeos , Transportador 1 de Glucose-Sódio/metabolismo , Simportadores
13.
Heliyon ; 10(9): e30207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737275

RESUMO

P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.

14.
Bioorg Med Chem ; 21(24): 7858-73, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24184213

RESUMO

Chemotherapy is one of the major forms of cancer treatment. Unfortunately, tumors are prone to multidrug resistance leading to failure of treatment. Breast cancer resistance protein (BCRP), the second member of ABC transporter subfamily G, has been found to play a major role in drug efflux and hence multidrug resistance. Until now, very few potent and selective BCRP inhibitors like Ko143 have been identified. In the search for more potent and selective BCRP inhibitors, we synthesized and investigated a series of differently substituted quinazoline compounds. Several variations at positions 2, 4, 6 and 7 of the quinazoline scaffold were carried out to develop a structure-activity-relationship analysis for these compounds. It was found that compounds bearing a phenyl substituent at position 2 of the 4-anilinoquinazoline scaffold were most potent. On the aniline ring at position 4 of the quinazoline moiety substituents like NO2, CN, CF3 led to very high BCRP inhibition potencies. The most potent compounds were further investigated for their intrinsic cytotoxicity and their ability to reverse the multidrug resistance. Compound 20, an anilinoquinazoline bearing a phenyl ring at position 2 and meta-nitro substitution on the 4-anilino ring, was found to have the highest therapeutic ratio. The most active compounds from each variation were also investigated for their effect on BCRP expression. It was found that compound 20 has no significant effect on BCRP expression, while compound 31 decreased the surface BCRP expression. The only difference in the two compounds was the presence of a 3,4-dimethoxyphenyl ring in compound 31 instead of phenyl substitution at position 2 of the quinazoline moiety. From the study of all target compounds, compound 20 was the most prominent compound having inhibitory potency even higher than Ko143, the most potent BCRP inhibitor known. Compound 20 was also found to be selective towards BCRP with a very high therapeutic ratio.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Quinazolinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
15.
J Biomol Struct Dyn ; 41(16): 7651-7664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36120948

RESUMO

Multidrug resistance (MDR) is a fundamental reason for the fiasco of carcinoma chemotherapy. A wide variety of anticarcinoma drugs are expelled from neoplasm cells through the ATP-binding cassette (ABC) transporter superfamily, rendering the neoplasm cells resistant to treatment. The ATP-binding cassette transporter G2 (ABCG2, gene symbol BCRP) is an ABC efflux transporter that plays a key function in MDR to antineoplastic therapies. For these reasons, the identification of medicaments as BCRP inhibitors could assist in discovering better curative approaches for breast cancer therapy. Because of the deficiency of prospective BCRP inhibitors, the SuperDRUG2 database was virtually screened for inhibitor activity towards the BCRP transporter using molecular docking computations. The most potent drug candidates were then characterized utilizing molecular dynamics (MD) simulations. Furthermore, molecular mechanics-generalized Born surface area (MM-GBSA) binding affinities of the most potent drug candidates were estimated. Based on the MM-GBSA binding affinities throughout 150 ns MD simulations, three drugs-namely zotarolimus (SD002595), temsirolimus (SD003393), and glecaprevir (SD006009)-revealed greater binding affinities towards BCRP transporter compared to the co-crystallized BWQ ligand with ΔGbinding values of -86.6 ± 5.6, -79.5 ± 8.0, -75.8 ± 4.6 and -59.5 ± 4.1 kcal/mol, respectively. The steadiness of these promising drugs bound with BCRP transporter was examined utilizing their structural and energetical analyses throughout a 150 ns MD simulation. To imitate the physiological environment, 150 ns MD simulations for the identified drugs bound with BCRP transporter were conducted in the 1-palmitoyl-2-oleoyl-phosphatidylcholine lipid bilayer. These findings identify zotarolimus, temsirolimus and glecaprevir as auspicious anti-MDR drug leads that warrant further experimental assays.Communicated by Ramaswamy H. Sarma.

16.
Biomed Khim ; 69(1): 72-77, 2023 Feb.
Artigo em Russo | MEDLINE | ID: mdl-36857429

RESUMO

Breast cancer resistance protein (BCRP,ABCG2) is an efflux transporter protein that transports various substrates from the cell to the extracellular space or organ cavities. The aim of this study was a complex assessment of the amount of BCRP during pregnancy in rabbits. The amount of BCRP in samples of the rabbit jejunum, liver, kidney, cerebral cortex, and placenta was determined by enzyme immunoassay, and in human hepatocellular carcinoma (HepG2) cells by the Western blot. To study the mechanisms involved in control of the dynamic BCRP levels during pregnancy, serum concentrations of sex hormones were investigated by radioimmunoassay and relative amounts of constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in these organs were evaluated using the Western blot method. The putative role of CAR and PXR in regulation of the BCRP level by progesterone was evaluated in vitro experiments on HepG2 cells. It was found that amount of BCRP in the jejunum of pregnant rabbits was higher than in the placenta, liver, kidneys, and cerebral cortex. An increase in the amount of BCRP in the liver of rabbits was noted on the 21st day of pregnancy and a tendency to the increase was also detected on the 28th day; in the kidney and cerebral cortex increased BCRP levels were detected on the 28th day and 14th day of pregnancy, respectively, as compared with non-pregnant females. In vitro experiments with HepG2 cells have shown that the increase in the BCRP level is determined by the activating effect of progesterone on PXR.


Assuntos
Neoplasias da Mama , Proteínas de Neoplasias , Feminino , Humanos , Gravidez , Animais , Coelhos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Progesterona , Rim
17.
Fluids Barriers CNS ; 20(1): 8, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721242

RESUMO

BACKGROUND: The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS: We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS: TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS: Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Feminino , Gravidez , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Moléculas com Motivos Associados a Patógenos , Ligantes , Lipopolissacarídeos , Proteínas de Neoplasias , Encéfalo , Proteínas de Membrana Transportadoras , Resistência a Múltiplos Medicamentos
18.
Cells ; 11(14)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883702

RESUMO

There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos , Células Endoteliais/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/metabolismo , Gravidez
19.
Eur J Pharm Sci ; 159: 105740, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524505

RESUMO

The promising anticancer drug milciclib potently inhibits cyclin-dependent kinase (CDK) 2 and tropomyosin receptor kinase (TRK) A, and is currently in phase II clinical studies. To characterize factors affecting milciclib pharmacokinetics, we investigated whether milciclib is a substrate of the multidrug efflux and uptake transporters ABCB1 (P-gp), ABCG2 (BCRP), and OATP1A/1B, and the drug-metabolizing enzyme CYP3A, using genetically-modified mouse models and Madin-Darby Canine Kidney (MDCK-II) cells. In vitro, milciclib was transported by mAbcg2, and this was inhibited by the ABCG2 inhibitor Ko143. Upon oral administration of milciclib, its plasma exposure in Abcb1a/1b-/-, Abcg2-/-, and Abcb1a/1b;Abcg2-/- mice was similar to that found in wild-type mice. Milciclib showed good brain penetration even in wild-type mice (brain-to-plasma ratio of 1.2), but this was further increased by 5.2-fold when both Abcb1 and Abcg2 were ablated, and to a lesser extent in single Abcb1- or Abcg2-deficient mice. Oatp1a/1b deficiency had only a minor impact on the milciclib plasma AUC0-24h and Cmax. The milciclib AUC0-8h increased 1.9-fold in Cyp3a-/- mice but decreased only 1.3-fold upon overexpression of human CYP3A4. Thus, ABCB1 and ABCG2 cooperatively limit milciclib brain penetration. The low impact of OATP1 and CYP3A could be clinically favorable for milciclib, reducing the risks of unintended drug-drug interactions or interindividual variation in CYP3A4 activity.


Assuntos
Citocromo P-450 CYP3A , Preparações Farmacêuticas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Cães , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Distribuição Tecidual
20.
Tissue Barriers ; 9(2): 1860616, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33427563

RESUMO

P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) modulate the distribution of drugs and toxins across the blood-brain barrier (BBB). Animal studies reported that infection-induced disruption of these transporters in the developing BBB impairs fetal brain protection. However, the impact of infection mimics on P-gp/BCRP function in human brain endothelium is less well understood. We hypothesized that Toll-like receptor ligands mimicking bacterial and viral infection would modify the expression and function of P-gp and BCRP in human brain endothelial cells (BECs). Human cerebral microvascular endothelial cells (hCMEC/D3) were challenged with bacterial [Lipopolysaccharide (LPS)] and viral-mimics [polyinosinic:polycytidylic acid (PolyI:C) or single-stranded RNA (ssRNA)], or pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon gamma (IFN)-É£. P-gp and BCRP function was assessed after 4 or 24 h, using Calcein-AM and Chlorin-6 assays, respectively. Western blot and qPCR quantified P-gp/ABCB1 and BCRP/ABCG2 expression following treatments. Infection mimics are potent modulators of drug transporters in human BECs in vitro. LPS and PolyI:C increased, while ssRNA exposure reduced P-gp activity. In contrast, LPS and PolyI:C decreased, while ssRNA increased BCRP activity (P < .05). There was little correlation between drug transporter function, gene expression and total protein level. Altered plasma membrane BCRP may suggest modified intracellular trafficking induced by infection in human BECs. Bacterial and viral infection mimics modify P-gp and BCRP transport function in human BECs, in vitro. This knowledge may contribute and have important implications for human brain protection and possible altered biodistribution of drugs and xenobiotics in the brain following exposure to TLR agonists.


Assuntos
Transporte Biológico/fisiologia , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA