Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396660

RESUMO

Bone marrow adipose tissue (BMAT) is hypothesized to serve as an expandable/contractible fat depot which functions, in part, to minimize energy requirements for sustaining optimal hematopoiesis. We investigated whether BMAT is required for immune reconstitution following injury. Male wild type (WBB6F1, WT) and BMAT-deficient WBB6F1/J-KitW/KitW-v/J (KitW/W-v) mice were lethally irradiated. Irradiation was followed by adoptive transfer of 1000 purified WT hematopoietic stem cells (HSCs). The extent of immune reconstitution in blood, bone marrow, and lymph nodes in the irradiated mice was determined using HSCs from green fluorescent protein (GFP)-expressing mice. We also evaluated skeletal response to treatment. Detection of GFP-positive B and T cells in peripheral blood at 4 and 9 weeks following adoptive transfer and in bone marrow and lymph nodes following necropsy revealed excellent immune reconstitution in both WT and BMAT-deficient mice. Adipocytes were numerous in the distal femur of WT mice but absent or rare in KitW/W-v mice. Bone parameters, including length, mass, density, bone volume, microarchitecture, and turnover balance, exhibited few differences between WT and BMAT-deficient mice. The minimal differences suggest that BMAT is not required for reconstitution of the immune system following lethal radiation and is not a major contributor to the skeletal phenotypes of kit signaling-deficient mice.


Assuntos
Tecido Adiposo , Medula Óssea , Masculino , Animais , Camundongos , Medula Óssea/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Células-Tronco Hematopoéticas , Osso e Ossos
2.
Stem Cells ; 40(5): 508-522, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35403694

RESUMO

Bone marrow (BM) adipose tissue (BMAT), a unique adipose depot, plays an important role in diseases such as osteoporosis and bone metastasis. Precise control of mesenchymal stem cell (MSC) differentiation is critical for BMAT formation and regeneration. Here, we show that death associated protein kinase 1 (DAPK1) negatively regulates BM adipogenesis in vitro and in vivo. Prx1creDapk1loxp/loxp mice showed more adipocytes in the femur than Dapk1loxp/loxp mice. Further mechanistic analyses revealed that DAPK1 inhibits p38 mitogen-activated protein kinase (MAPK) signaling in the nucleus by binding the p38 isoform MAPK14, decreasing p38 nuclear activity, which subsequently inhibits BM adipogenesis. The inhibitory effect of DAPK1 against MAPK14 was independent of its kinase activity. In addition, the decreased DAPK1 was observed in the BM-MSCs of ageing mice. Our results reveal a previously undescribed function for DAPK1 in the regulation of adipogenesis and may also reveal the underlying mechanism of BMAT formation in ageing.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Mesenquimais , Proteína Quinase 14 Ativada por Mitógeno , Adipogenia , Animais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Isoformas de Proteínas/metabolismo
3.
Curr Osteoporos Rep ; 21(1): 32-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564571

RESUMO

PURPOSE OF REVIEW: Bone marrow adipose tissue (BMAT) in the skeleton likely plays a variety of physiological and pathophysiological roles that are not yet fully understood. In elucidating the complex relationship between bone and BMAT, glucocorticoids (GCs) are positioned to play a key role, as they have been implicated in the differentiation of bone marrow mesenchymal stem cells (BMSCs) between osteogenic and adipogenic lineages. The purpose of this review is to illuminate aspects of both endogenous and exogenous GC signaling, including the influence of GC receptors, in mechanisms of bone aging including relationships to BMAT. RECENT FINDINGS: Harmful effects of GCs on bone mass involve several cellular pathways and events that can include BMSC differentiation bias toward adipogenesis and the influence of mature BMAT on bone remodeling through crosstalk. Interestingly, BMAT involvement remains poorly explored in GC-induced osteoporosis and warrants further investigation. This review provides an update on the current understanding of the role of glucocorticoids in the biology of osteoblasts and bone marrow adipocytes (BMAds).


Assuntos
Medula Óssea , Glucocorticoides , Humanos , Glucocorticoides/metabolismo , Medula Óssea/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Osteoblastos , Adipogenia , Osteogênese , Envelhecimento , Células da Medula Óssea
4.
Osteoporos Int ; 33(7): 1545-1556, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35113175

RESUMO

Bone marrow adipose tissue (BMAT) has been implicated in a number of conditions associated with bone deterioration and osteoporosis. Several studies have found an inverse relationship between BMAT and bone mineral density (BMD), and higher levels of BMAT in those with prevalent fracture. Magnetic resonance imaging (MRI) is the gold standard for measuring BMAT, but its use is limited by high costs and low availability. We hypothesized that BMAT could also be accurately quantified using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS: In the present study, a novel method to quantify the tibia bone marrow fat fraction, defined by MRI, using HR-pQCT was developed. In total, 38 postmenopausal women (mean [standard deviation] age 75.9 [3.1] years) were included and measured at the same site at the distal (n = 38) and ultradistal (n = 18) tibia using both MRI and HR-pQCT. To adjust for partial volume effects, the HR-pQCT images underwent 0 to 10 layers of voxel peeling to remove voxels adjacent to the bone. Linear regression equations were then tested for different degrees of voxel peeling, using the MRI-derived fat fractions as the dependent variable and the HR-pQCT-derived radiodensity as the independent variables. RESULTS: The most optimal HR-pQCT derived model, which applied a minimum of 4 layers of peeled voxel and with more than 1% remaining marrow volume, was able to explain 76% of the variation in the ultradistal tibia bone marrow fat fraction, measured with MRI (p < 0.001). CONCLUSION: The novel HR-pQCT method, developed to estimate BMAT, was able to explain a substantial part of the variation in the bone marrow fat fraction and can be used in future studies investigating the role of BMAT in osteoporosis and fracture prediction.


Assuntos
Fraturas Ósseas , Osteoporose , Tecido Adiposo/diagnóstico por imagem , Idoso , Densidade Óssea , Medula Óssea/diagnóstico por imagem , Feminino , Humanos , Osteoporose/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
5.
Connect Tissue Res ; 63(2): 97-111, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-31868022

RESUMO

Introduction: With age, the number of adipocytes and osteoclasts increases, the number of osteoblasts decreases, and mechano-adaptation is impaired.Objectives: Using marrow aspiration, which has a known osteogenic effect in young mice, we sought to recruit osteoblast progenitors to mediate the mechano-adaptive response to in vivo tibial loading.Methods: First, we assessed bone formation and marrow adiposity in the tibiae of old mice (>20 months) sacrificed 1, 2, and 4 weeks after unilateral marrow aspiration. Then, we examined the effects of marrow aspiration on mechano-adaptation in aged mice using tibial loading.Results: Two weeks after aspiration, aspirated tibiae had more bone than contralateral tibiae due to the formation of bone in the medullary canal. Two weeks and four weeks after marrow aspiration, the volume of marrow adipose tissue was higher in the aspirated tibiae, compared to contralateral tibiae. Histomorphometry indicated that aspiration increased non-periosteal (endosteal, intracortical, intramedullary) bone formation, compared to the contralateral tibia.  Mice with marrow aspiration had reduced periosteal bone formation in the contralateral tibia, compared to mice that had loading alone. Loading-induced periosteal bone formation was higher in mice that had loading alone, compared to mice that had aspiration + loading, indicating that aspiration further reduced the mechano-adaptive response.Conclusion: These data demonstrate that, in old mice, bone forms in the medullary canal following aspiration. Adiposity is increased following marrow aspiration, and periosteal mechano-adaptation is reduced.


Assuntos
Medula Óssea , Osteogênese , Tecido Adiposo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Tíbia
6.
Curr Osteoporos Rep ; 18(2): 85-94, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32124181

RESUMO

PURPOSE OF THE REVIEW: The purpose of this review is to describe the in vitro and in vivo methods that researchers use to model and investigate bone marrow adipocytes (BMAds). RECENT FINDINGS: The bone marrow (BM) niche is one of the most interesting and dynamic tissues of the human body. Relatively little is understood about BMAds, perhaps in part because these cells do not easily survive flow cytometry and histology processing and hence have been overlooked. Recently, researchers have developed in vitro and in vivo models to study normal function and dysfunction in the BM niche. Using these models, scientists and clinicians have noticed that BMAds, which form bone marrow adipose tissue (BMAT), are able to respond to numerous signals and stimuli, and communicate with local cells and distant tissues in the body. This review provides an overview of how BMAds are modeled and studied in vitro and in vivo.


Assuntos
Adipócitos , Tecido Adiposo , Células da Medula Óssea , Medula Óssea , Animais , Técnicas de Cocultura , Técnicas de Cultura , Citometria de Fluxo , Humanos , Técnicas In Vitro , Camundongos , Modelos Biológicos , Coelhos , Ratos
7.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033341

RESUMO

The most serious aspect of neoplastic disease is the spread of cancer cells to secondary sites. Skeletal metastases can escape detection long after treatment of the primary tumour and follow-up. Bone tissue is a breeding ground for many types of cancer cells, especially those derived from the breast, prostate, and lung. Despite advances in diagnosis and therapeutic strategies, bone metastases still have a profound impact on quality of life and survival and are often responsible for the fatal outcome of the disease. Bone and the bone marrow environment contain a wide variety of cells. No longer considered a passive filler, bone marrow adipocytes have emerged as critical contributors to cancer progression. Released by adipocytes, adipokines are soluble factors with hormone-like functions and are currently believed to affect tumour development. Src-associated in mitosis of 68 kDa (Sam68), originally discovered as a protein physically associated with and phosphorylated by c-Src during mitosis, is now recognised as an important RNA-binding protein linked to tumour onset and progression of disease. Sam68 also regulates splicing events and recent evidence reports that dysregulation of these events is a key step in neoplastic transformation and tumour progression. The present review reports recent findings on adipokines and Sam68 and their role in breast cancer progression and metastasis.


Assuntos
Adiponectina/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Leptina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Mitose/fisiologia , Fosforilação/fisiologia
8.
Calcif Tissue Int ; 100(5): 433-448, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27343063

RESUMO

Researchers globally are working towards finding a cure for multiple myeloma (MM), a destructive blood cancer diagnosed yearly in ~750,000 people worldwide (Podar et al. in Expert Opin Emerg Drugs 14:99-127, 2009). Although MM targets multiple organ systems, it is the devastating skeletal destruction experienced by over 90 % of patients that often most severely impacts patient morbidity, pain, and quality of life. Preventing bone disease is therefore a priority in MM treatment, and understanding how and why myeloma cells target the bone marrow (BM) is fundamental to this process. This review focuses on a key area of MM research: the contributions of the bone microenvironment to disease origins, progression, and drug resistance. We describe some of the key cell types in the BM niche: osteoclasts, osteoblasts, osteocytes, adipocytes, and mesenchymal stem cells. We then focus on how these key cellular players are, or could be, regulating a range of disease-related processes spanning MM growth, drug resistance, and bone disease (including osteolysis, fracture, and hypercalcemia). We summarize the literature regarding MM-bone cell and MM-adipocyte relationships and subsequent phenotypic changes or adaptations in MM cells, with the aim of providing a deeper understanding of how myeloma cells grow in the skeleton to cause bone destruction. We identify avenues and therapies that intervene in these networks to stop tumor growth and/or induce bone regeneration. Overall, we aim to illustrate how novel therapeutic target molecules, proteins, and cellular mediators may offer new avenues to attack this disease while reviewing currently utilized therapies.


Assuntos
Adipócitos/patologia , Medula Óssea/patologia , Osso e Ossos/patologia , Mieloma Múltiplo/patologia , Microambiente Tumoral , Humanos
9.
Cureus ; 16(6): e61636, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38966453

RESUMO

INTRODUCTION: Hemophagocytic lymphohistiocytosis (HLH) is a lethal emergency. Delays in diagnosis and treatment are detrimental to the health of patients. Classical clinical manifestations of HLH include fever, cytopenia, liver dysfunction, central nervous system involvement, and coagulopathy. METHODS: We report seven cases of secondary HLH in adults diagnosed from a total of 1200 bone marrow aspiration and trephine biopsy (BMAT) examinations in our center, with various presentations and underlying triggers including infection, malignancy, and autoimmune disease. RESULTS: HLH can present with non-specific signs and symptoms. CONCLUSION: Early recognition of HLH is crucial to enable the commencement of therapy as early as possible to prevent mortality resulting from multi-organ failure.

10.
Front Endocrinol (Lausanne) ; 15: 1397081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887268

RESUMO

Introduction: Unlike white adipose tissue depots, bone marrow adipose tissue (BMAT) expands during caloric restriction (CR). Although mechanisms for BMAT expansion remain unclear, prior research suggested an intermediary role for increased circulating glucocorticoids. Methods: In this study, we utilized a recently described mouse model (BMAd-Cre) to exclusively target bone marrow adipocytes (BMAds) for elimination of the glucocorticoid receptor (GR) (i.e. Nr3c1) whilst maintaining GR expression in other adipose depots. Results: Mice lacking GR in BMAds (BMAd-Nr3c1 -/-) and control mice (BMAd-Nr3c1 +/+) were fed ad libitum or placed on a 30% CR diet for six weeks. On a normal chow diet, tibiae of female BMAd-Nr3c1-/- mice had slightly elevated proximal trabecular metaphyseal bone volume fraction and thickness. Both control and BMAd-Nr3c1-/- mice had increased circulating glucocorticoids and elevated numbers of BMAds in the proximal tibia following CR. However, no significant differences in trabecular and cortical bone were observed, and quantification with osmium tetroxide and µCT revealed no difference in BMAT accumulation between control or BMAd-Nr3c1 -/- mice. Differences in BMAd size were not observed between BMAd-Nr3c1-/- and control mice. Interestingly, BMAd-Nr3c1-/- mice had decreased circulating white blood cell counts 4 h into the light cycle. Discussion: In conclusion, our data suggest that eliminating GR from BMAd has minor effects on bone and hematopoiesis, and does not impair BMAT accumulation during CR.


Assuntos
Adipócitos , Adiposidade , Medula Óssea , Restrição Calórica , Hematopoese , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/deficiência , Camundongos , Adipócitos/metabolismo , Adiposidade/fisiologia , Feminino , Medula Óssea/metabolismo , Camundongos Knockout , Osso e Ossos/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Masculino , Erros Inatos do Metabolismo
11.
Mol Metab ; 83: 101916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492843

RESUMO

OBJECTIVE: Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD: In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS: Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION: This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.


Assuntos
Adipócitos , Autofagia , Ácidos Graxos Monoinsaturados , Camundongos Knockout , Estearoil-CoA Dessaturase , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Animais , Camundongos , Adipócitos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Camundongos Endogâmicos C57BL , Lisossomos/metabolismo , Sobrevivência Celular , Células 3T3-L1 , Masculino , Metabolismo dos Lipídeos , Autofagossomos/metabolismo
12.
JMIR Med Educ ; 9: e47737, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099373

RESUMO

BACKGROUND: Large language models, such as ChatGPT by OpenAI, have demonstrated potential in various applications, including medical education. Previous studies have assessed ChatGPT's performance in university or professional settings. However, the model's potential in the context of standardized admission tests remains unexplored. OBJECTIVE: This study evaluated ChatGPT's performance on standardized admission tests in the United Kingdom, including the BioMedical Admissions Test (BMAT), Test of Mathematics for University Admission (TMUA), Law National Aptitude Test (LNAT), and Thinking Skills Assessment (TSA), to understand its potential as an innovative tool for education and test preparation. METHODS: Recent public resources (2019-2022) were used to compile a data set of 509 questions from the BMAT, TMUA, LNAT, and TSA covering diverse topics in aptitude, scientific knowledge and applications, mathematical thinking and reasoning, critical thinking, problem-solving, reading comprehension, and logical reasoning. This evaluation assessed ChatGPT's performance using the legacy GPT-3.5 model, focusing on multiple-choice questions for consistency. The model's performance was analyzed based on question difficulty, the proportion of correct responses when aggregating exams from all years, and a comparison of test scores between papers of the same exam using binomial distribution and paired-sample (2-tailed) t tests. RESULTS: The proportion of correct responses was significantly lower than incorrect ones in BMAT section 2 (P<.001) and TMUA paper 1 (P<.001) and paper 2 (P<.001). No significant differences were observed in BMAT section 1 (P=.2), TSA section 1 (P=.7), or LNAT papers 1 and 2, section A (P=.3). ChatGPT performed better in BMAT section 1 than section 2 (P=.047), with a maximum candidate ranking of 73% compared to a minimum of 1%. In the TMUA, it engaged with questions but had limited accuracy and no performance difference between papers (P=.6), with candidate rankings below 10%. In the LNAT, it demonstrated moderate success, especially in paper 2's questions; however, student performance data were unavailable. TSA performance varied across years with generally moderate results and fluctuating candidate rankings. Similar trends were observed for easy to moderate difficulty questions (BMAT section 1, P=.3; BMAT section 2, P=.04; TMUA paper 1, P<.001; TMUA paper 2, P=.003; TSA section 1, P=.8; and LNAT papers 1 and 2, section A, P>.99) and hard to challenging ones (BMAT section 1, P=.7; BMAT section 2, P<.001; TMUA paper 1, P=.007; TMUA paper 2, P<.001; TSA section 1, P=.3; and LNAT papers 1 and 2, section A, P=.2). CONCLUSIONS: ChatGPT shows promise as a supplementary tool for subject areas and test formats that assess aptitude, problem-solving and critical thinking, and reading comprehension. However, its limitations in areas such as scientific and mathematical knowledge and applications highlight the need for continuous development and integration with conventional learning strategies in order to fully harness its potential.

13.
Front Cell Dev Biol ; 11: 1104709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895792

RESUMO

Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.

14.
Front Endocrinol (Lausanne) ; 14: 1232574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881495

RESUMO

Background: Skeletal stem/progenitor cells (SSPCs) in the bone marrow can differentiate into osteoblasts or adipocytes in response to microenvironmental signalling input, including hormonal signalling. Glucocorticoids (GC) are corticosteroid hormones that promote adipogenic differentiation and are endogenously increased in patients with Cushing´s syndrome (CS). Here, we investigate bone marrow adiposity changes in response to endogenous or exogenous GC increases. For that, we characterize bone biopsies from patients with CS and post-menopausal women with glucocorticoid-induced osteoporosis (GC-O), compared to age-matched controls, including postmenopausal osteoporotic patients (PM-O). Methods: Transiliac crest bone biopsies from CS patients and healthy controls, and from postmenopausal women with GC-O and matched controls were analysed; an additional cohort included biopsies from women with PM-O. Plastic-embedded biopsies were sectioned for histomorphometric characterization and quantification of adipocytes. The fraction of adipocyte area per tissue (Ad.Ar/T.Ar) and marrow area (Ad.Ar/Ma.Ar), mean adipocyte profile area (Ad.Pf.Ar) and adipocyte profile density (N.Ad.Pf/Ma.Ar) were determined and correlated to steroid levels. Furthermore, the spatial distribution of adipocytes in relation to trabecular bone was characterized and correlations between bone marrow adiposity and bone remodeling parameters investigated. Results: Biopsies from patients with CS and GC-O presented increased Ad.Ar/Ma.Ar, along with adipocyte hypertrophy and hyperplasia. In patients with CS, both Ad.Ar/Ma.Ar and Ad.Pf.Ar significantly correlated with serum cortisol levels. Spatial distribution analyses revealed that, in CS, the increase in Ad.Ar/Ma.Ar near to trabecular bone (<100 µm) was mediated by both adipocyte hypertrophy and hyperplasia, while N.Ad.Pf/Ma.Ar further into the marrow (>100 µm) remained unchanged. In contrast, patients with GC-O only presented increased Ad.Ar/Ma.Ar and mean Ad.Pf.Ar>100 µm from trabecular bone surface, highlighting the differential effect of increased endogenous steroid accumulation. Finally, the Ad.Ar/Ma.Ar and Ad.Ar/T.Ar correlated with the canopy coverage above remodeling events. Conclusion: Increased cortisol production in patients with CS induces increased bone marrow adiposity, primarily mediated by adipocyte hypertrophy. This adiposity is particularly evident near trabecular bone surfaces, where hyperplasia also occurs. The differential pattern of adiposity in patients with CS and GC-O highlights that bone marrow adipocytes and their progenitors may respond differently in these two GC-mediated bone diseases.


Assuntos
Síndrome de Cushing , Osteoporose Pós-Menopausa , Osteoporose , Humanos , Feminino , Medula Óssea/patologia , Glucocorticoides/efeitos adversos , Síndrome de Cushing/complicações , Síndrome de Cushing/patologia , Adiposidade , Pós-Menopausa , Hiperplasia/induzido quimicamente , Hidrocortisona/farmacologia , Osteoporose/patologia , Hipertrofia/induzido quimicamente
15.
Front Endocrinol (Lausanne) ; 13: 959743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277726

RESUMO

Bone marrow adipose tissue (BMAT) levels are higher in distal femur metaphysis of female mice housed at thermoneutral (32°C) than in mice housed at 22°C, as are abdominal white adipose tissue (WAT) mass, and serum leptin levels. We performed two experiments to explore the role of increased leptin in temperature-enhanced accrual of BMAT. First, we supplemented 6-week-old female C57BL/6J (B6) mice with leptin for 2 weeks at 10 µg/d using a subcutaneously implanted osmotic pump. Controls consisted of ad libitum (ad lib) fed mice and mice pair fed to match food intake of leptin-supplemented mice. The mice were maintained at 32°C for the duration of treatment. At necropsy, serum leptin in leptin-supplemented mice did not differ from ad lib mice, suggesting suppression of endogenous leptin production. In support, Ucp1 expression in BAT, percent body fat, and abdominal WAT mass were lower in leptin-supplemented mice. Leptin-supplemented mice also had lower BMAT and higher bone formation in distal femur metaphysis compared to the ad lib group, changes not replicated by pair-feeding. In the second experiment, BMAT response was evaluated in 6-week-old female B6 wild type (WT), leptin-deficient ob/ob and leptin-treated (0.3 µg/d) ob/ob mice housed at 32°C for the 2-week duration of the treatment. Compared to mice sacrificed at baseline (22°C), BMAT increased in ob/ob mice as well as WT mice, indicating a leptin independent response to increased temperature. However, infusion of ob/ob mice with leptin, at a dose rate having negligible effects on either energy metabolism or serum leptin levels, attenuated the increase in BMAT. In summary, increased housing temperature and increased leptin have independent but opposing effects on BMAT in mice.


Assuntos
Medula Óssea , Leptina , Camundongos , Feminino , Animais , Leptina/metabolismo , Medula Óssea/metabolismo , Temperatura , Adiposidade , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
16.
J Bone Miner Res ; 37(2): 285-302, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34747055

RESUMO

Hallmarks of aging-associated osteoporosis include bone loss, bone marrow adipose tissue (BMAT) expansion, and impaired osteoblast function. Endogenous glucocorticoid levels increase with age, and elevated glucocorticoid signaling, associated with chronic stress and dysregulated metabolism, can have a deleterious effect on bone mass. Canonical glucocorticoid signaling through the glucocorticoid receptor (GR) was recently investigated as a mediator of osteoporosis during the stress of chronic caloric restriction. To address the role of the GR in an aging-associated osteoporotic phenotype, the current study utilized female GR conditional knockout (GR-CKO; GRfl/fl :Osx-Cre+) mice and control littermates on the C57BL/6 background aged to 21 months and studied in comparison to young (3- and 6-month-old) mice. GR deficiency in Osx-expressing cells led to low bone mass and BMAT accumulation that persisted with aging. Surprisingly, however, GR-CKO mice also exhibited alterations in muscle mass (reduced % lean mass and soleus fiber size), accompanied by reduced voluntary physical activity, and also exhibited higher whole-body metabolic rate and elevated blood pressure. Moreover, increased lipid storage was observed in GR-CKO osteoblastic cultures in a glucocorticoid-dependent fashion despite genetic deletion of the GR, and could be reversed via pharmacological inhibition of the mineralocorticoid receptor (MR). These findings provide evidence of a role for the GR (and possibly the MR) in facilitating healthy bone maintenance with aging in females. The effects of GR-deficient bone on whole-body physiology also demonstrate the importance of bone as an endocrine organ and suggest evidence for compensatory mechanisms that facilitate glucocorticoid signaling in the absence of osteoblastic GR function; these represent new avenues of research that may improve understanding of glucocorticoid signaling in bone toward the development of novel osteogenic agents. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Medula Óssea , Receptores de Glucocorticoides , Tecido Adiposo/metabolismo , Envelhecimento , Animais , Medula Óssea/metabolismo , Feminino , Glucocorticoides/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Receptores de Glucocorticoides/metabolismo
17.
Front Endocrinol (Lausanne) ; 13: 853765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360075

RESUMO

Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.


Assuntos
Tecido Adiposo , Envelhecimento , Medula Óssea , Adipócitos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Humanos , Inflamação
18.
Trends Endocrinol Metab ; 33(6): 401-408, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35396163

RESUMO

Recent studies have highlighted the role of bone marrow adipose tissue (BMAT) as a regulator of skeletal homeostasis and energy metabolism. While long considered an inert filler, occupying empty spaces from bone loss and reduced hematopoiesis, BMAT is now considered a secretory and metabolic organ that responds to nutritional challenges and secretes cytokines, which indirectly impact energy and bone metabolism. The recent advances in our understanding of the function of BMAT have been enabled by novel noninvasive imaging techniques, which allow longitudinal assessment of BMAT in vivo following interventions. This review will focus on the latest advances in our understanding of BMAT and its role in metabolic health. Imaging techniques to quantify the content and composition of BMAT will be discussed.


Assuntos
Tecido Adiposo , Medula Óssea , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Metabolismo Energético , Humanos
19.
Front Endocrinol (Lausanne) ; 13: 879588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498418

RESUMO

The first International Summer School on Bone Marrow Adiposity was organized by members of Bone Marrow Adiposity Society and held virtually on September 6-8 2021. The goal of this meeting was to bring together young scientists interested in learning about bone marrow adipose tissue biology and pathology. Fifty-two researchers from different backgrounds and fields, ranging from bone physiopathology to adipose tissue biology and hematology, participated in the summer school. The meeting featured three keynote lectures on the fundamentals of bone marrow adiposity, three scientific workshops on technical considerations in studying bone marrow adiposity, and six motivational and career development lectures, spanning from scientific writing to academic career progression. Moreover, twenty-one participants presented their work in the form of posters. In this report we highlight key moments and lessons learned from the event.


Assuntos
Adiposidade , Medula Óssea , Humanos , Obesidade , Instituições Acadêmicas , Estações do Ano
20.
Front Endocrinol (Lausanne) ; 13: 882297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528017

RESUMO

Bone marrow contains precursor cells for osteoblasts and adipocytes in the stromal compartment. Bone marrow adipose tissue (BMAT) is an important constituent of the bone marrow that is particularly abundant in adults. BMAT is composed of the proximal "regulated" BMAT containing individual adipocytes interspersed within actively hematopoietic marrow, and the distal "constitutive" BMAT containing large adipocytes in the area of low hematopoiesis. Historically, bone marrow adipocytes were regarded as one of the terminal states of skeletal stem cells, which stand at the pinnacle of the lineage and possess trilineage differentiation potential into osteoblasts, chondrocytes and adipocytes. Recent single-cell RNA-sequencing studies uncover a discrete group of preadipocyte-like cells among bone marrow stromal cells (BMSCs), and recent mouse genetic lineage-tracing studies reveal that these adipocyte precursor cells possess diverse functions in homeostasis and regeneration. These adipogenic subsets of BMSCs are abundant in the central marrow space and can directly convert not only into lipid-laden adipocytes but also into skeletal stem cell-like cells and osteoblasts under regenerative conditions. It remains determined whether there are distinct adipocyte precursor cell types contributing to two types of BMATs. In this short review, we discuss the functions of the recently identified subsets of BMSCs and their trajectory toward marrow adipocytes, which is influenced by multiple modes of cell-autonomous and non-cell autonomous regulations.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA