Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO Rep ; 22(1): e50714, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33225563

RESUMO

Latent infection with herpesviruses constitutively activates inflammasomes, while lytic replication suppresses their activation through distinct mechanisms. However, how Epstein-Barr virus (EBV) lytic replication inhibits the activation of inflammasomes remains unknown. Here, we reveal that the EBV immediate-early protein BRLF1 inhibits inflammasome activation, and BRLF1 deficiency significantly increases the activation of inflammasomes and pyroptosis during early lytic lifecycle. BRLF1 interacts with RNA polymerase III subunits to suppress immunostimulatory small RNA transcription, RIG-I inflammasome activation, and antiviral responses. Consequently, BRLF1-deficient EBV primary infection induces robust T-cell and NK cell activation and killing through IL-1ß and IL-18. A BRLF1-derived peptide that inhibits inflammasome activation is sufficient to suppress T-cell and NK cell responses during BRLF1-deficient EBV primary infection in lymphocytes. These results reveal a novel mechanism involved in the evasion of inflammasome activation and antiviral responses during EBV early lytic infection and provide a promising approach for the manipulation of inflammasomes against infection of oncogenic herpesviruses.


Assuntos
Proteína DEAD-box 58 , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4/fisiologia , Proteínas Imediatamente Precoces , Inflamassomos , RNA Polimerase II , Receptores Imunológicos , Herpesvirus Humano 4/genética , Humanos , Inflamassomos/genética , Transativadores/genética , Replicação Viral
2.
Genomics ; 113(4): 2591-2604, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34087421

RESUMO

The immediate-early protein BRLF1 plays important roles in lytic infection of Epstein-Barr virus (EBV), in which it activates lytic viral transcription and replication. However, knowledge of the influence of BRLF1 on cellular gene expression and transcriptional reprogramming during the early lytic cycle remains limited. In the present study, deep RNA-sequencing analysis identified all differentially expressed genes (DEGs) and alternative splicing in B lymphoma cells subjected to wild-type and BRLF1-deficient EBV primary infection. The BRLF1-dependent cellular DEGs were annotated, and major differentially enriched pathways were related to DNA replication and transcription, immune and inflammatory responses, cytokine-receptor interactions and chemokine signaling and metabolic processes. Furthermore, analysis of BRLF1-binding proteins by mass spectrometry shows that BRLF1 binds to and cooperates with several transcription factors and components of the spliceosome and then influences both RNA polymerase II-dependent transcription and pre-mRNA splicing. The RTA-binding RRE motifs or specific motifs of unique cooperative transcription factors in viral and cellular DEG promoter regions indicate that BRLF1 employs different strategies for regulating viral and cellular transcription. Thus, our study characterized BRLF1-dependent cellular and viral transcriptional profile during primary infection and then revealed the comprehensive virus-cell interaction and alterations of transcription during EBV primary infection and lytic replication.


Assuntos
Infecções por Vírus Epstein-Barr , Proteínas Imediatamente Precoces , Linfoma , Infecções por Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcriptoma
3.
J Med Virol ; 86(10): 1788-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24615673

RESUMO

The immediate-early (IE) genes, BZLF1 and BRLF1, play an important role in switching Epstein-Barr virus from the latent to the lytic state. The functions of the two IE genes and their respective proteins: ZEBRA and Rta have been well studied, but little is known about their DNA coding sequence variations and disease association. In order to investigate the sequence variation patterns and elucidate their association with lymphomas, BZLF1 and BRLF1 were analyzed in 26 and 33 lymphomas using PCR-direct sequencing method respectively. Three sequence variation types of BZLF1 gene were identified. The type BZLF1-A and BZLF1-B was detected in 34.6% (9/26) and 57.7% (15/26) of the tumor specimens, respectively. Among the three functional domains of ZEBRA, the transactivation domain had the most mutations. Three variation types were also identified in BRLF1 gene where type BR1-A and BR1-C were detected in 27.3% (9/33) and 69.7% (23/33) of specimens, respectively. Among the three functional domains of Rta, the dimerization domain was well conserved while multiple mutations were detected in both the DNA binding domain and the transactivation domain. The variation types BZLF1-B and BR1-C were more frequent in the lymphomas, compared with the throat washing samples from the healthy donors. These results suggest that the type BZLF1-B and BR1-C may be associated with the tumorigenesis of lymphoma.


Assuntos
Herpesvirus Humano 4/genética , Proteínas Imediatamente Precoces/genética , Linfoma/virologia , Polimorfismo Genético , Transativadores/genética , Frequência do Gene , Humanos , Linfoma/genética , Mutação , Análise de Sequência de DNA
4.
Viral Immunol ; 37(2): 115-123, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38498796

RESUMO

Nasopharyngeal carcinoma (NPC) is a specific human malignancy with unique geographic distribution and genetic backgrounds. Although early treatment with radio-chemotherapy has been proven effective for NPC therapy, its therapeutic efficacy substantially diminishes in the late stages of this malignancy. In the tumor microenvironment of NPC, PD-L1 has been demonstrated as a critical factor in impairing T cell activation. As an etiological role for NPC development, it is found that Epstein-Barr virus (EBV) latent proteins upregulated PD-L1 expression. However, whether EBV lytic protein affects PD-L1 expression remains unclear. In this study, through monitoring the mRNA expression pattern of lytic genes and PD-L1 in EBV-positive NPC cell line NA, EBV immediately-early gene BRLF1(Rta) was found to have the potential for PD-L1 activation. Furthermore, we identified that Rta expression enhanced PD-L1 expression in mRNA and protein levels through quantitative real-time polymerase chain reaction and western blotting analysis. The luciferase reporter assay revealed that Rta expression enhanced PD-L1 promoter activity. We also demonstrated that Rta-induced PD-L1 expressions could impair interleukin 2 secretion of T cells, and this mechanism may be through ERK activation. These results displayed the importance of EBV Rta in PD-L1 expression in NPC and may give an alternative target for NPC therapy.


Assuntos
Infecções por Vírus Epstein-Barr , Proteínas Imediatamente Precoces , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Antígeno B7-H1/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , RNA Mensageiro/genética , Microambiente Tumoral , Transativadores/genética , Transativadores/metabolismo , Transativadores/farmacologia , Proteínas Imediatamente Precoces/genética
5.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695622

RESUMO

Epstein-Barr virus (EBV) is a human gammaherpesvirus that causes infectious mononucleosis and several malignancies, such as endemic Burkitt lymphoma and nasopharyngeal carcinoma. Herpesviruses carry genes that can modify cell functions, including transcription and ubiquitination, thereby facilitating viral growth and survival in infected cells. Using a reporter screening system, we revealed the involvement of several EBV gene products in such processes. Of these, BGLF2 activated the AP-1 signaling pathway through phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Knockout of the BGLF2 gene did not affect viral gene expression and viral genome DNA replication, but resulted in marked reduction of progeny titer. We also found that the BGLF2 disruption resulted in significant loss of infectivity upon de novo infection. Interestingly, expression of a binding partner, BKRF4, repressed the activation of AP-1 by BGLF2. These results shed light on the physiological role of the tegument protein BGLF2.IMPORTANCE Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, carries ~80 genes. While several genes have been investigated extensively, most lytic genes remain largely unexplored. Therefore, we cloned 71 EBV lytic genes into an expression vector and used reporter assays to screen for factors that activate signal transduction pathways, viral and cellular promoters. BGLF2 activated the AP-1 signaling pathway, likely by interacting with p38 and c-Jun N-terminal kinase (JNK), and increased infectivity of the virus. We also revealed that BKRF4 can negatively regulate AP-1 activity. Therefore, it is suggested that EBV exploits and modifies the AP-1 signaling pathway for its replication and survival.


Assuntos
Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Fator de Transcrição AP-1/metabolismo , Proteínas Virais de Fusão/fisiologia , Replicação do DNA , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais , Proteínas Virais de Fusão/genética , Replicação Viral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
EBioMedicine ; 37: 101-109, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30420297

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) infection is a crucial risk factor for nasopharyngeal carcinoma (NPC), but the mechanism for its elevated activation level in NPC endemic areas remains unclear. This study aims to identify the EBV natural variations contributed to the different reactivation potential between NPC endemic and non-endemic areas. METHODS: 1030 subjects were recruited in China, including 303 healthy individuals from two NPC non-endemic areas, 483 healthy people from three endemic areas and 244 NPC patients. Among which, saliva DNA samples from 244 participants were sequenced for the EBV immediate early (IE) genes of BRLF1 and BZLF1, their promoters were included; the rest 786 subjects were used for the validation of significant variations among three different populations. Haplotype and population structure analysis were conducted. Dual-luciferase assay was used to detect the promoter activity. RESULTS: A total of 246 distinct variations were detected, 29 showed significant difference in the frequencies between healthy people from NPC endemic area and non-endemic area. Population structure analysis clustered EBV strains into 9 subgroups mostly in accordance with the geographical origin of samples. Interestingly, two EBV genotypes, Rp-V1 and Rp-V2, were identified according to the linkage relationship of the variations in BRLF1 promoter (Rp). Rp-V1 has higher frequency in NPC endemic areas than in non-endemic areas (52.38% vs 18.15%, P = 2.07 × 10-14), and was associated with higher oral EBV DNA levels (adjusted OR = 1.64, 95% CI = 1.21-2.24, P = .002), suggesting a more powerful activation ability of Rp-V1 than that of the prototype Rp-of the EBV strain; On the contrary, Rp-V2 has higher frequency in NPC non-endemic areas than in endemic areas (18.48% vs 0.38%, P = 1.17 × 10-7), might represent a reduced activation potential of EBV. Further dual-luciferase assay showed Rp-V1 has higher promoter activity while compared with Rp-V2 (P < .0001). Notably, Rp-V1 impaired the transcription repression effect of YY1 while Rp-V2 strengthened the transcription repression effect of EBF1 on Rp. In addition, significant differences of Rta 393-407 CTL epitope which may influence the recognition of Rta by CD8+ T cells were detected between healthy people from NPC endemic area and non-endemic area. CONCLUSIONS: This study identified natural variations in cis-acting elements (YY1 and EBF1) of EBV Rp altering Rp transcription activities, which may contribute to the elevated EBV activation level in NPC endemic areas than non-endemic areas.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Variação Genética , Herpesvirus Humano 4/genética , Proteínas Imediatamente Precoces/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Regiões Promotoras Genéticas , Transativadores/genética , China/epidemiologia , Infecções por Vírus Epstein-Barr/epidemiologia , Feminino , Humanos , Masculino , Carcinoma Nasofaríngeo/epidemiologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/epidemiologia , Neoplasias Nasofaríngeas/virologia
7.
Head Neck ; 40(7): 1515-1523, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29522272

RESUMO

BACKGROUND: Chromogenic Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (EBER-ISH) is the gold standard to detect Epstein-Barr virus (EBV) but it is difficult to use in conjunction with immunohistochemistry (IHC). In this study, our purpose was to validate the sensitivity and specificity of RNAscope in detection of EBV infection in nasal epithelium and its stroma. METHODS: Fluorescence-based RNAscope EBER-ISH, BRLF1-ISH, and lineage marker-IHC were performed on archived formalin-fixed paraffin-embedded tissues from normal nasal cavity (n = 5), nasopharynx (n = 8), and nasopharyngeal carcinoma (NPC) specimens (n = 10). RESULTS: The EBERs were detected in 10 of 10 NPC samples but was absent in all normal tissues from the nasal cavity and nasopharynx. The EBERs were exclusively located in pan-cytokeratin (pan-CK)-positive tumor epithelial cells but not in CD45-positive leukocytes and vimentin-positive stromal fibroblasts. The level of EBER expression varied in tumor cells within patient and between patients as well. Additionally, 5 of 10 patients had positive BRLF-ISH. CONCLUSION: We developed a simple and reproducible method to simultaneously detect mRNA and protein in formalin-fixed paraffin-embedded tissues of NPC. As a single staining, traditional EBER continues to be useful; however, for interpretation of the phenotype of EBV-infected cells, RNAscope is superior. Significantly, we showed that lytic EBV infection took place in NPC tumors.


Assuntos
Infecções por Vírus Epstein-Barr/diagnóstico , Hibridização In Situ , Carcinoma Nasofaríngeo/virologia , RNA Viral/análise , Adolescente , Adulto , Idoso , Feminino , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/virologia
8.
Oncotarget ; 8(45): 78948-78964, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108278

RESUMO

Nasopharyngeal carcinoma (NPC) is a serious health problem in China and Southeast Asia. Relapse is the major cause of mortality, but mechanisms of relapse are mysterious. Epstein-Barr virus (EBV) reactivation and host genomic instability (GI) have correlated with NPC development. Previously, we reported that lytic early genes DNase and BALF3 induce genetic alterations and progressive malignancy in NPC cells, implying lytic proteins may be required for NPC relapse. In this study, we show that immediate early gene BRLF1 induces chromosome mis-segregation and genomic instability in the NPC cells. Similar phenomenon was also demonstrated in 293 and zebrafish embryonic cells. BRLF1 nuclear localization signal (NLS) mutant still induced genomic instability and inhibitor experiments revealed that BRLF1 interferes with chromosome segregation and induces genomic instability by activating Erk signaling. Furthermore, the chromosome aberrations and tumorigenic features of NPC cells were significantly increased with the rounds of BRLF1 expression, and these cells developed into larger tumor nodules in mice. Therefore, BRLF1 may be the important factor contributing to NPC relapse and targeting BRLF1 may benefit patients.

9.
EBioMedicine ; 1(2-3): 116-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26137519

RESUMO

Epstein Barr virus (EBV) persists as a latent herpes virus infection in the majority of the adult human population. The virus can reactivate from this latent infection into lytic replication for virus particle production. Here, we report that autophagic membranes, which engulf cytoplasmic constituents during macroautophagy and transport them to lysosomal degradation, are stabilized by lytic EBV replication in infected epithelial and B cells. Inhibition of autophagic membrane formation compromises infectious particle production and leads to the accumulation of viral DNA in the cytosol. Vice versa, pharmacological stimulation of autophagic membrane formation enhances infectious virus production. Atg8/LC3, an essential macroautophagy protein and substrate anchor on autophagic membranes, was found in virus preparations, suggesting that EBV recruits Atg8/LC3 coupled membranes to its envelope in the cytosol. Our data indicate that EBV subverts macroautophagy and uses autophagic membranes for efficient envelope acquisition during lytic infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA