Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.486
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 203-228, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31986071

RESUMO

Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor-mediated signals-substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.


Assuntos
Suscetibilidade a Doenças , Homeostase , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Biomarcadores , Interações Hospedeiro-Patógeno , Humanos , Imunidade nas Mucosas , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/microbiologia , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Cell ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39089253

RESUMO

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.

3.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35182483

RESUMO

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Assuntos
Infecções Bacterianas , Listeriose , Linfócitos B , Centro Germinativo , Humanos , Monócitos
4.
Cell ; 167(3): 657-669.e21, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768889

RESUMO

Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.

5.
Cell ; 164(3): 349-52, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824652

RESUMO

Type I interferon (IFN-I) elicits a complex cascade of events in response to microbial infection. Here, we review recent developments illuminating the large number of IFN-I species and describing their unique biologic functions.


Assuntos
Infecções Bacterianas/imunologia , Interferon Tipo I/metabolismo , Viroses/imunologia , Animais , Infecções Bacterianas/microbiologia , Humanos , Interferon Tipo I/química , Interferon Tipo I/imunologia , Receptor de Interferon alfa e beta/metabolismo , Viroses/virologia
6.
Cell ; 167(2): 444-456.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716507

RESUMO

While conventional pathogenic protists have been extensively studied, there is an underappreciated constitutive protist microbiota that is an integral part of the vertebrate microbiome. The impact of these species on the host and their potential contributions to mucosal immune homeostasis remain poorly studied. Here, we show that the protozoan Tritrichomonas musculis activates the host epithelial inflammasome to induce IL-18 release. Epithelial-derived IL-18 promotes dendritic cell-driven Th1 and Th17 immunity and confers dramatic protection from mucosal bacterial infections. Along with its role as a "protistic" antibiotic, colonization with T. musculis exacerbates the development of T-cell-driven colitis and sporadic colorectal tumors. Our findings demonstrate a novel mutualistic host-protozoan interaction that increases mucosal host defenses at the cost of an increased risk of inflammatory disease.


Assuntos
Colite/imunologia , Colite/parasitologia , Interações Hospedeiro-Parasita , Inflamassomos/imunologia , Mucosa Intestinal/parasitologia , Microbiota/imunologia , Tricomoníase/imunologia , Trichomonas/imunologia , Animais , Colite/microbiologia , Dientamoeba/imunologia , Imunidade nas Mucosas , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Simbiose , Células Th1/imunologia , Células Th17/imunologia
7.
Mol Cell ; 82(15): 2844-2857.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35662396

RESUMO

Lysosomes are the main organelles in macrophages for killing invading bacteria. However, the precise mechanism underlying lysosomal biogenesis upon bacterial infection remains enigmatic. We demonstrate here that LPS stimulation increases IRG1-dependent itaconate production, which promotes lysosomal biogenesis by activating the transcription factor, TFEB. Mechanistically, itaconate directly alkylates human TFEB at cysteine 212 (Cys270 in mice) to induce its nuclear localization by antagonizing mTOR-mediated phosphorylation and cytosolic retention. Functionally, abrogation of itaconate synthesis by IRG1/Irg1 knockout or expression of an alkylation-deficient TFEB mutant impairs the antibacterial ability of macrophages in vitro. Furthermore, knockin mice harboring an alkylation-deficient TFEB mutant display elevated susceptibility to Salmonella typhimurium infection, whereas in vivo treatment of OI, a cell-permeable itaconate derivative, limits inflammation. Our study identifies itaconate as an endogenous metabolite that functions as a lysosomal inducer in macrophages in response to bacterial infection, implying the potential therapeutic utility of itaconate in treating human bacterial infection.


Assuntos
Lisossomos , Succinatos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Humanos , Imunidade Inata , Lisossomos/metabolismo , Camundongos , Succinatos/metabolismo , Succinatos/farmacologia
8.
Immunol Rev ; 323(1): 126-137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491842

RESUMO

Group 3 innate lymphoid cells (ILC3s) are tissue-resident immune lymphocytes that critically regulate intestinal homeostasis, organogenesis, and immunity. ILC3s possess the capacity to "sense" the inflammatory environment within tissues, especially in the context of pathogen challenges that imprints durable non-antigen-specific changes in ILC3 function. As such, ILC3s become a new actor in the emerging field of trained innate immunity. Here, we summarize recent discoveries regarding ILC3 responses to bacterial challenges and the role these encounters play in triggering trained innate immunity. We further discuss how signaling events throughout ILC3 ontogeny potentially control the development and function of trained ILC3s. Finally, we highlight the open questions surrounding ILC3 "training" the answers to which may reveal new insights into innate immunity. Understanding the fundamental concepts behind trained innate immunity could potentially lead to the development of new strategies for improving immunity-based modulation therapies for inflammation, infectious diseases, and cancer.


Assuntos
Imunidade Inata , Linfócitos , Transdução de Sinais , Humanos , Animais , Linfócitos/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Homeostase , Inflamação/imunologia , Microbioma Gastrointestinal/imunologia , Intestinos/imunologia
9.
Proc Natl Acad Sci U S A ; 121(4): e2311630121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232278

RESUMO

Copper is an essential trace element for the human body, and its requirement for optimistic immune functions has been recognized for decades. How copper is involved in the innate immune pathway, however, remains to be clarified. Here, we report that copper serves as a signal molecule to regulate the kinase activity of alpha-kinase 1 (ALPK1), a cytosolic pattern-recognition receptor (PRR), and therefore promotes host cell defense against bacterial infection. We show that in response to infection, host cells actively accumulate copper in the cytosol, and the accumulated cytosolic copper enhances host cell defense against evading pathogens, including intracellular and, unexpectedly, extracellular bacteria. Subsequently, we demonstrate that copper activates the innate immune pathway of host cells in an ALPK1-dependent manner. Further mechanistic studies reveal that copper binds to ALPK1 directly and is essential for the kinase activity of this cytosolic PRR. Moreover, the binding of copper to ALPK1 enhances the sensitivity of ALPK1 to the bacterial metabolite ADP-heptose and eventually prompts host cells to elicit an enhanced immune response during bacterial infection. Finally, using a zebrafish in vivo model, we show that a copper-treated host shows an increased production of proinflammatory cytokines, enhanced recruitment of phagosome cells, and promoted bacterial clearance. Our findings uncover a previously unrecognized role of copper in the modulation of host innate immune response against bacterial pathogens and advance our knowledge on the cross talk between cytosolic copper homeostasis and immune system.


Assuntos
Infecções Bacterianas , Cobre , Animais , Humanos , Peixe-Zebra , Imunidade Inata , Citocinas , Receptores de Reconhecimento de Padrão
10.
Immunity ; 47(2): 374-388.e6, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813662

RESUMO

The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.


Assuntos
Células de Kupffer/fisiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritônio/microbiologia , Animais , Comunicação Celular , Autorrenovação Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Células de Kupffer/microbiologia , Fígado/microbiologia , Fígado/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infiltração de Neutrófilos , Peritônio/patologia
11.
Immunity ; 47(1): 135-147.e5, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723546

RESUMO

Lung infections cause prolonged immune alterations and elevated susceptibility to secondary pneumonia. We found that, after resolution of primary viral or bacterial pneumonia, dendritic cells (DC), and macrophages exhibited poor antigen-presentation capacity and secretion of immunogenic cytokines. Development of these "paralyzed" DCs and macrophages depended on the immunosuppressive microenvironment established upon resolution of primary infection, which involved regulatory T (Treg) cells and the cytokine TGF-ß. Paralyzed DCs secreted TGF-ß and induced local Treg cell accumulation. They also expressed lower amounts of IRF4, a transcription factor associated with increased antigen-presentation capacity, and higher amounts of Blimp1, a transcription factor associated with tolerogenic functions, than DCs present during primary infection. Blimp1 expression in DC of humans suffering sepsis or trauma correlated with severity and complicated outcomes. Our findings describe mechanisms underlying sepsis- and trauma-induced immunosuppression, reveal prognostic markers of susceptibility to secondary infections and identify potential targets for therapeutic intervention.


Assuntos
Células Dendríticas/imunologia , Infecções por Escherichia coli/imunologia , Vírus da Influenza A/imunologia , Macrófagos/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia/imunologia , Sepse/imunologia , Idoso , Animais , Apresentação de Antígeno , Diferenciação Celular , Células Cultivadas , Escherichia coli , Feminino , Humanos , Tolerância Imunológica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fator 1 de Ligação ao Domínio I Regulador Positivo , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
12.
EMBO Rep ; 25(2): 770-795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182816

RESUMO

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.


Assuntos
Adenina , Infecções Bacterianas , Receptor 2 Toll-Like , Animais , Camundongos , Adenina/análogos & derivados , Inflamação/genética , Metiltransferases/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
13.
Mol Cell Proteomics ; : 100829, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147027

RESUMO

Listeria monocytogenes is a foodborne intracellular bacterial model pathogen. Protective immunity against Listeria depends on an effective CD8+ T cell response, but very few T cell epitopes are known in mice as a common animal infection model for listeriosis. To identify epitopes we screened for Listeria immunopeptides presented in the spleen of infected mice by mass spectrometry-based immunopeptidomics. We mapped more than 6,000 mouse self-peptides presented on MHC Class I molecules, including 12 high confident Listeria peptides from 12 different bacterial proteins. Bacterial immunopeptides with confirmed fragmentation spectra were further tested for their potential to activate CD8+ T cells, revealing VTYNYINI from the putative cell wall surface anchor family protein LMON_0576 as a novel bona fide peptide epitope. The epitope showed high biological potency in a prime boost model and can be used as a research tool to probe CD8+ T cell responses in mouse models of Listeria infection. Together, our results demonstrate the power of immunopeptidomics for bacterial antigen identification.

14.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36825571

RESUMO

The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinação , Endossomos/metabolismo , Lisossomos/metabolismo
15.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594661

RESUMO

Bacterial infection is a major threat to human health, with infections resulting in considerable mortality, urging the need for a more profound understanding of bacteria-host interactions. During infection of cells, host cytoskeletal networks constantly interact with bacteria and are integral to their uptake. Vimentin, an intermediate filament protein, is one such cytoskeletal component that interacts with bacteria during infection. Although vimentin is predominantly present in the cytoplasm, it also appears in a secreted form or at the surface of multiple cell types, including epithelial cells, endothelial cells, macrophages and fibroblasts. As a cytoplasmic protein, vimentin participates in bacterial transportation and the consequential immune-inflammatory responses. When expressed on the cell surface, vimentin can be both pro- and anti-bacterial, favoring bacterial invasion in some contexts, but also limiting bacterial survival in others. Vimentin is also secreted and located extracellularly, where it is primarily involved in bacterial-induced inflammation regulation. Reciprocally, bacteria can also manipulate the fate of vimentin in host cells. Given that vimentin is not only involved in bacterial infection, but also the associated life-threatening inflammation, the use of vimentin-targeted drugs might offer a synergistic advantage. In this Review, we recapitulate the abundant evidence on vimentin and its dynamic changes in bacterial infection and speculate on its potential as an anti-bacterial therapeutic target.


Assuntos
Infecções Bacterianas , Filamentos Intermediários , Humanos , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Células Endoteliais/metabolismo , Inflamação
16.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36575815

RESUMO

In the current era, one of the major challenges is to manage the treatment of drug/antibiotic-resistant strains of bacteria. Phage therapy, a century-old technique, may serve as an alternative to antibiotics in treating bacterial infections caused by drug-resistant strains of bacteria. In this review, a systematic attempt has been made to summarize phage-based therapy in depth. This review has been divided into the following two sections: general information and computer-aided phage therapy (CAPT). In the case of general information, we cover the history of phage therapy, the mechanism of action, the status of phage-based products (approved and clinical trials) and the challenges. This review emphasizes CAPT, where we have covered primary phage-associated resources, phage prediction methods and pipelines. This review covers a wide range of databases and resources, including viral genomes and proteins, phage receptors, host genomes of phages, phage-host interactions and lytic proteins. In the post-genomic era, identifying the most suitable phage for lysing a drug-resistant strain of bacterium is crucial for developing alternate treatments for drug-resistant bacteria and this remains a challenging problem. Thus, we compile all phage-associated prediction methods that include the prediction of phages for a bacterial strain, the host for a phage and the identification of interacting phage-host pairs. Most of these methods have been developed using machine learning and deep learning techniques. This review also discussed recent advances in the field of CAPT, where we briefly describe computational tools available for predicting phage virions, the life cycle of phages and prophage identification. Finally, we describe phage-based therapy's advantages, challenges and opportunities.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Humanos , Terapia por Fagos/métodos , Prófagos , Genômica , Bactérias/genética , Antibacterianos
17.
FASEB J ; 38(13): e23767, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924166

RESUMO

Macrophages possess a diverse range of well-defined capabilities and roles as phagocytes, encompassing the regulation of inflammation, facilitation of wound healing, maintenance of tissue homeostasis, and serving as a crucial element in the innate immune response against microbial pathogens. The emergence of extracellular traps is a novel strategy of defense that has been observed in several types of innate immune cells. In response to infection, macrophages are stimulated and produce macrophage extracellular traps (METs), which take the form of net-like structures, filled with strands of DNA and adorned with histones and other cellular proteins. METs not only capture and eliminate microorganisms but also play a role in the development of certain diseases such as inflammation and autoimmune disorders. The primary objective of this study is to examine the latest advancements in METs for tackling bacterial infections. We also delve into the current knowledge and tactics utilized by bacteria to elude or endure the effects of METs. Through this investigation, we hope to shed light on the intricate interactions between bacteria and the host's immune system, particularly in the context of microbicidal effector mechanisms of METs. The continued exploration of METs and their impact on host defense against various pathogens opens up new avenues for understanding and potentially manipulating the immune system's response to infections.


Assuntos
Infecções Bacterianas , Armadilhas Extracelulares , Macrófagos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Animais , Imunidade Inata
18.
Proc Natl Acad Sci U S A ; 119(43): e2121077119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269862

RESUMO

Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.


Assuntos
Neutrófilos , Receptores de Fator Estimulador de Colônias de Granulócitos , Humanos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos/genética , Citocinas
19.
Clin Microbiol Rev ; 36(4): e0001523, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37909789

RESUMO

MicroRNAs (miRNAs) are conserved, short, non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They have been implicated in the pathogenesis of cancer and neurological, cardiovascular, and autoimmune diseases. Several recent studies have suggested that miRNAs are key players in regulating the differentiation, maturation, and activation of immune cells, thereby influencing the host immune response to infection. The resultant upregulation or downregulation of miRNAs from infection influences the protein expression of genes responsible for the immune response and can determine the risk of disease progression. Recently, miRNAs have been explored as diagnostic biomarkers and therapeutic targets in various infectious diseases. This review summarizes our current understanding of the role of miRNAs during viral, fungal, bacterial, and parasitic infections from a clinical perspective, including critical functional mechanisms and implications for their potential use as biomarkers and therapeutic targets.


Assuntos
Doenças Transmissíveis , MicroRNAs , Doenças Parasitárias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Biomarcadores , Doenças Parasitárias/diagnóstico , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/genética , Doenças Transmissíveis/terapia
20.
J Infect Dis ; 230(2): e474-e485, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38271704

RESUMO

BACKGROUND: Transcriptomics has been used to evaluate immune responses during malaria in diverse cohorts worldwide. However, the high heterogeneity of cohorts and poor generalization of transcriptional signatures reported in each study limit their potential clinical applications. METHODS: We compiled 28 public data sets containing 1556 whole-blood or peripheral blood mononuclear cell transcriptome samples. We estimated effect sizes with Hedge's g value and the DerSimonian-Laird random-effects model for meta-analyses of uncomplicated malaria. Random forest models identified gene signatures that discriminate malaria from bacterial infections or malaria severity. Parasitological, hematological, immunological, and metabolomics data were used for validation. RESULTS: We identified 3 gene signatures: the uncomplicated Malaria Meta-Signature, which discriminates Plasmodium falciparum malaria from uninfected controls; the Malaria or Bacteria Signature, which distinguishes malaria from sepsis and enteric fever; and the cerebral Malaria Meta-Signature, which characterizes individuals with cerebral malaria. These signatures correlate with clinical hallmark features of malaria. Blood transcription modules indicate immune regulation by glucocorticoids, whereas cell development and adhesion are associated with cerebral malaria. CONCLUSIONS: Transcriptional meta-signatures reflecting immune cell responses provide potential biomarkers for translational innovation and suggest critical roles for metabolic regulators of inflammation during malaria.


Assuntos
Biomarcadores , Malária Falciparum , Plasmodium falciparum , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Humanos , Biomarcadores/sangue , Plasmodium falciparum/genética , Transcriptoma , Perfilação da Expressão Gênica , Malária Cerebral/diagnóstico , Malária Cerebral/genética , Malária Cerebral/sangue , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA