Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 343, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789572

RESUMO

Isolates of Vibrio splendidus are ubiquitously presented in various marine environments, and they can infect diverse marine culture animals, leading to high mortality and economic loss. Therefore, a control strategy of the infection caused by V. splendidus is urgently recommended. Tryptanthrin is a naturally extracted bioactive chemical with antimicrobial activity to other bacteria. In this study, the effects of tryptanthrin on the bacterial growth and virulence-related factors of one pathogenic strain V. splendidus AJ01 were determined. Tryptanthrin (10 µg/mL) could completely inhibit the growth of V. splendidus AJ01. The virulence-related factors of V. splendidus AJ01 were affected in the presence of tryptanthrin. Tryptanthrin resulted an increase in biofilm formation, but lead to reduction in the motility and hemolytic activity of V. splendidus cells. In the cells treated with tryptanthrin, two distinctly differentially expressed extracellular proteins, proteases and flagellum, were identified using SDS-PAGE combined with LC-MS. Real-time reverse transcriptase PCR confirmed that the genes involved in the flagellar formation and hemolysin decreased, whereas specific extracellular proteases and the genes involved in the biofilm formation were upregulated. Two previously annotated luxOVs genes were cloned, and their expression levels were analyzed at different cell densities. Molecular docking was performed to predict the interaction between LuxOVs and ATP/tryptanthrin. The two sigma-54-dependent transcriptional regulators showed similar ATP or tryptanthrin binding capacity but with different sites, and the direct competitive binding between ATP and tryptanthrin was present only in their binding to LuxO1. These results indicated that tryptanthrin can be used as a bactericide of V. splendidus by inhibiting the growth, bacterial flagella, and extracellular proteases, but increasing the biofilm. Sigma-54-dependent transcriptional regulator, especially the quorum sensing regulatory protein LuxO1, was determined to be the potential target of tryptanthrin. KEY POINTS: • Tryptanthrin inhibited the growth of V. splendidus in a dose-dependent manner. • The effect of tryptanthrin on the virulence factors of V. splendidus was characterized. • LuxO was the potential target for tryptanthrin based on molecular docking.


Assuntos
Antibacterianos , Biofilmes , Quinazolinas , Vibrio , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Vibrio/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Quinazolinas/farmacologia , Quinazolinas/química , Fatores de Virulência/genética , Simulação de Acoplamento Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
2.
Prep Biochem Biotechnol ; : 1-10, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970798

RESUMO

The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.

3.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895142

RESUMO

Against the backdrop of escalating infrastructure budgets worldwide, a notable portion-up to 45%-is allocated to maintenance endeavors rather than innovative infrastructure development. A substantial fraction of this maintenance commitment involves combatting concrete degradation due to microbial attacks. In response, this study endeavors to propose a remedial strategy employing nano metals and repurposed materials within cement mortar. The methodology entails the adsorption onto eggshell membranes (ESM) of silver nitrate (ESM/AgNO3) or silver nanoparticles (ESM/AgNPs) yielding silver-eggshell membrane composites. Subsequently, the resulting silver-eggshell membrane composites were introduced in different proportions to replace cement, resulting in the formulation of ten distinct mortar compositions. A thorough analysis encompassing a range of techniques, such as spectrophotometry, scanning electron microscopy, thermogravimetric analysis, X-ray fluorescence analysis, X-ray diffraction (XRD), and MTT assay, was performed on these composite blends. Additionally, evaluations of both compressive and tensile strengths were carried out. The mortar blends 3, 5, and 6, characterized by 2% ESM/AgNO3, 1% ESM/AgNPs, and 2% ESM/AgNPs cement replacement, respectively, exhibited remarkable antimicrobial efficacy, manifesting in substantial reduction in microbial cell viability (up to 50%) of typical waste activated sludge. Concurrently, a marginal reduction of approximately 10% in compressive strength was noted, juxtaposed with an insignificant change in tensile strength. This investigation sheds light on a promising avenue for addressing concrete deterioration while navigating the balance between material performance and structural integrity.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Animais , Nanopartículas Metálicas/química , Casca de Ovo/química , Prata/análise , Nanocompostos/química , Microscopia Eletrônica de Varredura , Antibacterianos/química
4.
J Environ Manage ; 347: 119235, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806267

RESUMO

Silage as the main forage for ruminants could be a reservoir for antibiotic resistance genes (ARGs) through which these genes got access into the animals' system causing a latent health risk. This study employed metagenomics and investigated the ARGs' fate and transmission mechanism in high-moisture alfalfa silage treated with formic acid bactericide. The results showed that there were 22 ARGs types, in which multidrug, macrolide-lincosamide-streptogramine, bacitracin, beta-lactam, fosmidomycin, kasugamycin, and polymycin resistance genes were the most prevalent ARGs types in the ensiled alfalfa. The natural ensiling process increased ARGs enrichment. Intriguingly, after 5 days of ensiling, formic acid-treated silage reduced ARGs abundances by inhibiting host bacterial and plasmids. Although formic acid bactericide enhanced the fermentation characteristics of the high-moisture alfalfa by lowering silage pH, butyric acid concentration, dry matter losses and proteolysis, it increased ARGs abundances in alfalfa silage owing to increases in abundances of ARGs carriers and transposase after 90 days of ensiling. Notably, several pathogens like Staphylococcus, Clostridium, and Pseudomonas were inferred as potential ARGs hosts in high-moisture alfalfa silage, and high-moisture alfalfa silage may harbor a portion of the clinical ARGs. Fundamentally, microbes were distinguished as the foremost driving factor of ARGs propagation in ensiling microecosystem. In conclusion, although formic acid bactericide improved the fermentation characteristics of high-moisture alfalfa during ensiling and reduced ARGs enrichment at the initial ensiling stage, it increased ARGs enrichment at the end of ensiling.


Assuntos
Antibacterianos , Silagem , Animais , Silagem/análise , Silagem/microbiologia , Antibacterianos/farmacologia , Medicago sativa , Formiatos/farmacologia , Fermentação
5.
Angew Chem Int Ed Engl ; 62(46): e202311698, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37755438

RESUMO

Bacteria infection is a significant obstacle in the clinical treatment of exposed wounds facing widespread pathogens. Herein, we report a DNA origami-based bactericide for efficient anti-infection therapy of infected wounds in vivo. In our design, abundant DNAzymes (G4/hemin) can be precisely organized on the DNA origami for controllable generation of reactive oxygen species (ROS) to break bacterial membranes. After the destruction of the membrane, broad-spectrum antibiotic levofloxacin (LEV, loaded in the DNA origami through interaction with DNA duplex) can be easily delivered into the bacteria for successful sterilization. With the incorporation of DNA aptamer targeting bacterial peptidoglycan, the DNA origami-based bactericide can achieve targeted and combined antibacterial therapy for efficiently promoting the healing of infected wounds. This tailored DNA origami-based nanoplatform provides a new strategy for the treatment of infectious diseases in vivo.


Assuntos
Aptâmeros de Nucleotídeos , Infecção dos Ferimentos , Humanos , Antibacterianos/uso terapêutico , DNA/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico
6.
Crit Rev Food Sci Nutr ; 62(6): 1466-1479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33226264

RESUMO

Adequate iodine nutrition is crucial for all mammals by playing his starring role as a component of thyroid hormones, which are key regulators of cellular processes for life such as differentiation, growth, function, and metabolism. Deficiency or excess of iodine in the diet are worldwide highly frequent conditions that are responsible of health problems like hypothyroidism, hypothyroxinemia, goiter, thyroiditis, hyperthyroidism, and autoimmune thyroid diseases among others. The incorporation of iodine in salt or other nutrients resolved the consequences of severe iodine deficiency like goiter, cretinism. However, this strategy in several countries led to other ailments like Hashimoto autoimmune thyroiditis, hyperthyroidism, and hypothyroidism. The goal of this review is to analyze and discuss the different aspects of iodine nutrition for human health comprising its biological role through thyroid hormones, pathogen control, and the regulation of the intestinal microbiota.


Assuntos
Bócio , Hipertireoidismo , Hipotireoidismo , Iodo , Animais , Humanos , Micronutrientes
7.
Plant Dis ; 106(12): 3133-3144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35549324

RESUMO

The growing concern regarding the potential risks of pesticides and their impact on nontarget organisms stimulates the development and application of alternative, environmentally friendly products. It seems necessary to develop alternatives for conventional products and for those already widely used in organic agriculture, e.g., copper. Very importantly, such alternative products should not limit the productivity and profitability of agriculture. In this study, we examined the efficacy of licorice (Glycyrrhiza glabra) leaf extract as such an alternative. We tested its impact on the virulence of Pseudomonas syringae toward the model plant Arabidopsis thaliana and the crop plant tomato (Solanum lycopersicum) as well as of Clavibacter michiganensis, Xanthomonas campestris, and Phytophthora infestans toward tomato, at multiple levels. We demonstrate that licorice leaf extract acts as a direct fungicide and bactericide. Moreover, it acts against a metalaxyl-resistant P. infestans strain. In addition, the extract from licorice leaves influences the plant immune system, modulating the plant responses to the challenge with pathogen(s); this involves both salicylic acid and ethylene-based responses. Our results show that in addition to the well-known use of licorice root extract in medicine, the leaf extract can be an effective alternative in organic and integrated farming, contributing to copper reduction and resistance management.[Formula: see text] Copyright © 2022 The Author(s). This is an open-access article distributed under the CC BY 4.0 International license.


Assuntos
Glycyrrhiza , Solanum lycopersicum , Cobre , Doenças das Plantas/prevenção & controle , Pseudomonas syringae , Extratos Vegetais/farmacologia
8.
Nano Lett ; 21(19): 8510-8517, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34402623

RESUMO

MXenes, two-dimensional metal carbides or nitrides with multifunctional surfaces, are one of the most promising antibacterial nanoscale materials. However, their putative bactericidal mechanism is elusive. To study their bactericidal mechanism, we investigated the interaction between a MXene nanosheet and a model bacterial membrane by molecular dynamics simulations and found that an adsorbed MXene on a membrane surface induced a local phase transition in a domain where the fluidity of the phospholipid in this domain at room temperature was comparable with that of the gel phase. The domain also showed a denser and thinner phospholipid membrane structure than the peripheral phospholipids. By comparing it with our previous experiments of the bactericidal activity of MXenes, we proposed the leakage of intercellular molecules at the phase boundary defects as a possible bactericidal mechanism of MXenes that leads to cell lysis. This study provides a useful model for tailoring new bactericidal nanomaterials.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Antibacterianos/farmacologia , Transição de Fase , Fosfolipídeos
9.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362319

RESUMO

Sugarcane leaf scald is a systemic disease caused by Xanthomonas albilineans that limits sugarcane yield and quality. Previous research has shown that exogenous application of copper hydroxide to plants is effective in controlling this disease. However, long-term bactericide use causes serious "3R" problems: resistance, resurgence, and residue. It is therefore urgent to discover new methods for the improvement of bactericide efficiency and efficacy. In the present study, disease index values for leaf scald were measured in sugarcane seedlings over time to determine the effects of different concentrations of copper hydroxide, types of silicon additive, and treatment timing after inoculation with X. albilineans on controlling sugarcane leaf scald disease. Our results show copper hydroxide mixed with organosilicon additive could improve the bactericide efficiency and efficacy and reduce the growth of pathogenic bacteria, even at a reduced concentration in both laboratory and field conditions. This study provides an important practical model for controlling sugarcane leaf scald disease by reducing the concentration of bactericide and increasing its efficacy in sugarcane fields.


Assuntos
Saccharum , Xanthomonas , Saccharum/microbiologia , Folhas de Planta/microbiologia
10.
Zhongguo Zhong Yao Za Zhi ; 47(4): 889-896, 2022 Feb.
Artigo em Zh | MEDLINE | ID: mdl-35285187

RESUMO

This study was designed to identify the pathogen causing soft rot of Pinellia ternata in Qianjiang of Hubei province and screen out the effective bactericides, so as to provide a theoretical basis for the control of soft rot of P. ternata. In this study, the pathogen was identified based on molecular biology and physiological biochemistry, followed by the detection of pathogenicity and pathogenicity spectrum via plant tissue inoculation in vitro and the indoor toxicity determination using the inhibition zone method to screen out bactericide with good antibacterial effects. The control effect of the bactericide against P. ternata soft rot was verified by the leave and tuber inoculation in vitro. The phylogenetic tree was constructed based on the 16 S rDNA, dnaX gene, and recA gene sequences, respectively, and the result showed that the pathogen belonged to the same branch as the type strain Dickeya fangzhongdai JS5. The physiological and biochemical tests showed that the pathogen was identical to D. fangzhongdai, which proved that the pathogen was D. fangzhongdai. The pathogenicity test indicated that the pathogen could obviously infect leaves at 24 h and tubers in 3 d. As revealed by the indoor toxicity test, 0.3% tetramycin, 5% allicin, and 80% ethylicin had good antibacterial activities, with EC_(50) values all less than 50 mg·L~(-1). Tests in tissues in vitro showed that 5% allicin exhibited the best control effect, followed by 0.3% tetramycin and 10% zhongshengmycin oligosaccharide, and their preventive effects were better than curative effects. Therefore, 5% allicin can be used as the preferred agent for the control of P. ternata soft rot, and 0.3% tetramycin and 10% zhongshengmycin oligosaccharide as the alternatives. This study has provided a certain theoretical basis for the control of P. ternata soft rot.


Assuntos
Pinellia , Filogenia , Pinellia/química , Folhas de Planta , Tubérculos
11.
Mol Ecol ; 30(10): 2235-2247, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738885

RESUMO

How pollinators mediate microbiome assembly in the anthosphere is a major unresolved question of theoretical and applied importance in the face of anthropogenic disturbance. We addressed this question by linking visitation of diverse pollinator functional groups (bees, wasps, flies, butterflies, beetles, true bugs and other taxa) to the key properties of the floral microbiome (microbial α- and ß-diversity and microbial network) under agrochemical disturbance, using a field experiment of bactericide and fungicide treatments on cultivated strawberries that differ in flower abundance. Structural equation modelling was used to link agrochemical disturbance and flower abundance to pollinator visitation to floral microbiome properties. Our results revealed that (i) pollinator visitation influenced the α- and ß-diversity and network centrality of the floral microbiome, with different pollinator functional groups affecting different microbiome properties; (ii) flower abundance influenced the floral microbiome both directly by governing the source pool of microbes and indirectly by enhancing pollinator visitation; and (iii) agrochemical disturbance affected the floral microbiome primarily directly by fungicide, and less so indirectly via pollinator visitation. These findings improve the mechanistic understanding of floral microbiome assembly, and may be generalizable to many other plants that are visited by diverse insect pollinators in natural and managed ecosystems.


Assuntos
Borboletas , Polinização , Agroquímicos , Animais , Abelhas , Ecossistema , Flores
12.
Environ Res ; 199: 111220, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33992637

RESUMO

Triclosan (TCS) and propranolol (PRO) are emerging micropollutants that are difficult to remove in wastewater treatment plants. In this study, methanogenic potential (P) of anaerobic sludge submitted to TCS (3.6 ± 0.1 to 15.5 ± 0.1 mg L-1) and PRO (6.1 ± 0.1 to 55.9 ± 1.2 mg L-1) in sanitary sewage, was investigated in batch reactors. The use of cosubstrates (200 mg L-1 of organic matter) ethanol, methanol:ethanol and fumarate was evaluated for micropollutant degradation. Without cosubstrates, P values for 5.0 ± 0.1 mgTCS L-1, 15.5 ± 0.1 mgTCS L-1 and 55.0 ± 1.3 mgPRO L-1 were 50.53%, 98.24% and 17.66% lower in relation to Control assay (855 ± 5 µmolCH4) with sanitary sewage, without micropollutants and cosubstrates, respectively. The use of fumarate, ethanol and methanol:ethanol favored greater methane production, with P values of 2144 ± 45 µmolCH4, 2960 ± 185 µmolCH4 and 2239 ± 171 µmolCH4 for 5.1 ± 0.1 mgTCS L-1, respectively; and of 10,827 ± 185 µmolCH4, 10,946 ± 108 µmolCH4 and 10,809 ± 210 µmolCH4 for 55.0 ± 1.3 mgPRO L-1, respectively. Greater degradation of TCS (77.1 ± 0.1% for 5.1 ± 0.1 mg L-1) and PRO (24.1 ± 0.1% for 55.9 ± 1.2 mg L-1) was obtained with ethanol. However, with 28.5 ± 0.5 mg PRO L-1, greater degradation (88.4 ± 0.9%) was obtained without cosubstrates. With TCS, via sequencing of rRNA 16S gene, for Bacteria Domain, greater abundance of phylum Chloroflexi and of the genera Longilinea, Arcobacter, Mesotoga and Sulfuricurvum were identified. With PRO, the genus VadinBC27 was the most abundant. Methanosaeta was dominant in TCS with ethanol, while in PRO without cosubstrates, Methanobacterium and Methanosaeta were the most abundant. The use of metabolic cosubstrates is a favorable strategy to obtain greater methanogenic potential and degradation of TCS and PRO.


Assuntos
Triclosan , Purificação da Água , Anaerobiose , Reatores Biológicos , Propranolol , Esgotos
13.
Appl Microbiol Biotechnol ; 104(3): 1319-1330, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853568

RESUMO

Over the last years, the global production and trade of kiwifruit has been severely impacted by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogen that causes a disease in kiwifruit plants known as bacterial canker. The available treatments for this disease are still scarce, with the most common involving frequently spraying the orchards with disinfectants, copper-based bactericides and/or antibiotics. Moreover, these treatments should be avoided due to their high toxicity to the environment and promotion of bacterial resistance. Phage therapy may be an alternative approach to inactivate Psa. The present study investigated the potential application of the already commercially available bacteriophage (or phage) ϕ6 to control Psa infections. The inactivation of Psa was assessed in vitro, using liquid culture medium, and ex vivo, using artificially contaminated kiwifruit leaves with two biovar 3 (a highly aggressive pathogen) strains (Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10). In the in vitro experiments, the phage ϕ6 was effective against both strains (maximum reduction of 2.2 and 1.9 CFU/mL for Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10, respectively). In the ex vivo tests, the decrease was lower (maximum reduction 1.1 log and 1.8 CFU/mL for Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10, respectively). The results of this study suggest that the commercially available phage ϕ6 can be an effective alternative to control Psa infections in kiwifruit orchards.


Assuntos
Actinidia/microbiologia , Bacteriófagos/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/virologia , Frutas/microbiologia , Especificidade de Hospedeiro , Viabilidade Microbiana , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Pseudomonas syringae/patogenicidade
14.
Luminescence ; 35(3): 434-436, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239641

RESUMO

The antibacterial properties of self-cleaning coatings are based on bactericide nanoparticles (NPs). Ecotoxicity of these NPs have been assessed mostly in suspension, using standard bioassays. Here a protocol is proposed to test actual coating samples, using the Vibrio fischeri bioluminescence inhibition bioassay. The protocol was designed to test bactericide properties of specially coated PVC floors being used in hospital environments under quasinatural conditions, such as prolonged exposure or room temperature. To take into consideration that the light output of the bacteria under prolonged exposure naturally changes, a correction factor is proposed.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/farmacologia , Nanopartículas/química , Antibacterianos/química , Medições Luminescentes , Testes de Sensibilidade Microbiana
15.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899710

RESUMO

Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In the present review, the preparation methods, properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed. Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of the synthesis methods and conditions on the thermal and mechanical properties, along with the bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed in this review. The current status of research in the field and future perspectives were also signaled.


Assuntos
Tecnologia Biomédica , Celulose/química , Metais/química , Nanopartículas/química , Óxidos/química , Antibacterianos/farmacologia , Celulose/ultraestrutura
16.
Klin Lab Diagn ; 65(10): 652-658, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-33245657

RESUMO

The effect of bactericide Sekusept active (B SA), a peracetic acid-based preparation, on microbial strains, isolated from patients with severe infectious diseases who were treated in a regional children's multi-specialty hospital, was studied. Based on the biochemical identification, the strains were classified as gram-negative non-fermenting bacteria (22 strains), Enterobacteriaceae family (18 strains), and bacilli - 3 strains. The biocidal activity of B SA was evaluated by the degree of inhibition of the growth of bacterial cells, existing in the planktonic form and in the form of biofilm (on a flat-bottomed plastic immunological tablet). It was shown that all the studied strains had the ability to biofilm formation, most of them (67,4%) formed moderately pronounced biofilms, and non-fermenting bacteria had a particularly pronounced coefficient of biofilm formation. The selected concentrations of B CA inhibited the growth of planktonic cells, and the ability of bactericide to prevent the formation of biofilms depended on the concentration (the most effective concentrations were 0,8 and 3,0%). Sensitivity of the strains existed in the aged biofilm to the bactericide was significantly lower, especially resistant to this effect were biofilms formed by non-fermenting bacteria and representatives of fam. Enterobacteriaceae. Our results confirm the importance of testing the effectiveness of biocides not only in accordance with standard methods developed for microorganisms in planktonic form, but also for biofilms.


Assuntos
Antibacterianos , Biofilmes , Idoso , Antibacterianos/farmacologia , Bactérias , Criança , Atenção à Saúde , Humanos , Testes de Sensibilidade Microbiana
17.
J Exp Biol ; 222(Pt 20)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31537653

RESUMO

Microvesicles are key players in cellular communication. As glandular secretions present a rich source of active exosomes, we hypothesized that exosome-like vesicles are present in Apis mellifera hypopharyngeal gland secretomal products (honey, royal jelly and bee pollen), and participate in their known antibacterial and pro-regenerative effects. We developed an isolation protocol based on serial centrifugation and ultracentrifugation steps and demonstrated the presence of protein-containing exosome-like vesicles in all three bee-derived products. Assessing their antibacterial properties, we found that exosome-like vesicles had bacteriostatic, bactericidal and biofilm-inhibiting effects on Staphylococcus aureus Furthermore, we demonstrated that mesenchymal stem cells (MSCs) internalize bee-derived exosome-like vesicles and that these vesicles influence the migration potential of the MSCs. In an in vitro wound-healing assay, honey and royal jelly exosome-like vesicles increased migration of human MSCs, demonstrating their inter-kingdom activity. In summary, we have discovered exosome-like vesicles as a new, active compound in bee pollen, honey and royal jelly.


Assuntos
Antibacterianos/farmacologia , Abelhas/metabolismo , Exossomos/metabolismo , Ácidos Graxos/química , Mel , Pólen/química , Regeneração/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Humanos , Pólen/ultraestrutura
18.
Can J Microbiol ; 65(12): 922-929, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31525298

RESUMO

Blue light (BL) exerts an antimicrobial effect on pathogenic bacteria. It has been hypothesized that its bactericidal activity depends upon the generation of reactive oxygen species (such as anion superoxides) and the resultant cellular damage. However, some aspects of this hypothesis needed to be tested and investigated. Thus, the work conducted herein examined the molecular impact of BL treatment on Cronobacter sakazakii, an emerging foodborne pathogen. The results showed that BL exhibited an efficient bactericidal effect against C. sakazakii. Under a sublethal BL dose, both intracellular anion superoxides and malondialdehyde (a marker of oxidative stress) contents were increased gradually. Moreover, permeability of the outer membrane was increased by approximately 50%, indicating membrane damage. Further investigation revealed alterations to cellular fatty acid profiles, with a decrease and disappearance of unsaturated fatty acids, including C18:2, C16:1, and C18:1. These data indicate that bacterial lipids, especially unsaturated fatty acids, are important molecular targets of BL photo-oxidation. The transcriptional response of bacteria to BL was also studied, and it was found that three genes were upregulated, including genes encoding antioxidants. The current study contributes towards an improved understanding of the bactericidal mechanisms of BL and highlights the importance of lipid and membrane damage.


Assuntos
Cronobacter sakazakii/efeitos da radiação , Ácidos Graxos/efeitos da radiação , Luz , Estresse Oxidativo/efeitos da radiação , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/efeitos da radiação , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Ácidos Graxos/química , Genes Bacterianos/genética , Viabilidade Microbiana/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos da radiação
19.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646547

RESUMO

Wounds frequently become infected or contaminated with bacteria. Potassium oleate (C18:1K), a type of fatty acid potassium, caused >4 log colony-forming unit (CFU)/mL reductions in the numbers of Staphylococcus aureus and Escherichia coli within 10 min and a >2 log CFU/mL reduction in the number of Clostridium difficile within 1 min. C18:1K (proportion removed: 90.3%) was significantly more effective at removing Staphylococcus aureus biofilms than the synthetic surfactant detergents sodium lauryl ether sulfate (SLES) (74.8%, p < 0.01) and sodium lauryl sulfate (SLS) (78.0%, p < 0.05). In the WST (water-soluble tetrazolium) assay, mouse fibroblasts (BALB/3T3 clone A31) in C18:1K (relative viability vs. control: 102.8%) demonstrated a significantly higher viability than those in SLES (30.1%) or SLS (18.1%, p < 0.05). In a lactate dehydrogenase (LDH) leakage assay, C18:1K (relative leakage vs. control: 108.9%) was found to be associated with a significantly lower LDH leakage from mouse fibroblasts than SLES or SLS (720.6% and 523.4%, respectively; p < 0.05). Potassium oleate demonstrated bactericidal effects against various species including Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Clostridium difficile; removed significantly greater amounts of Staphylococcus aureus biofilm material than SLES and SLS; and maintained fibroblast viability; therefore, it might be useful for wound cleaning and peri-wound skin.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácidos Graxos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Animais , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/patogenicidade , Escherichia coli/genética , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Potássio/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Cicatrização
20.
Biochem Cell Biol ; 96(5): 580-591, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29394490

RESUMO

Myeloperoxidase (MPO), found mainly in neutrophils, is released in inflammation. MPO produces reactive halogen species (RHS), which are bactericidal agents. However, RHS overproduction, i.e., halogenative stress, can also damage host biomolecules, and MPO itself may be targeted by RHS. Therefore, we examined the susceptibility of MPO to inactivation by its primary products (HOCl, HOBr, HOSCN) and secondary products such as taurine monochloramine (TauCl) and taurine monobromamine (TauBr). MPO was dose-dependently inhibited up to complete inactivity by treatment with HOCl or HOBr. TauBr diminished the activity but did not eliminate it. TauCl had no effect. MPO became inactivated when producing HOCl or HOBr but not HOSCN. Taurine protected MPO against inactivation when MPO was catalyzing oxidation of Cl- to HOCl, whereas taurine failed to prevent inactivation when MPO was working with Br-, either alone or in combination with Cl-. SCN- interfered with HOCl-mediated MPO inhibition. UV-vis spectra showed that heme degradation is involved in HOCl- and HOBr-mediated MPO inactivation. A negative linear correlation between the remaining chlorinating activity of HOCl- or HOBr-modified MPO and Escherichia coli survival upon incubation with MPO/H2O2/Cl- was found. This study elucidated the possibility of MPO downregulation by MPO-derived RHS, which could counteract halogenative stress.


Assuntos
Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Ácido Hipocloroso , Peroxidase/química , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Ácido Hipocloroso/química , Ácido Hipocloroso/farmacologia , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA