Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Space Sci Rev ; 218(2): 5, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250103

RESUMO

Two of the instruments onboard the OSIRIS-REx spacecraft, the MapCam color imager and the OVIRS visible and infrared spectrometer, observed the surface of asteroid (101955) Bennu in partially overlapping wavelengths. Significant scientific advances have been enabled by using data from these two instruments in tandem, but a robust statistical understanding of their relationship is needed for future analyses to cross-compare their data as accurately and sensitively as possible. Here we present a cross-instrument comparison of data acquired by MapCam and OVIRS, including methods and results for all global and site-specific observation campaigns in which both instruments were active. In our analysis, we consider both the absolute radiometric offset and the relative (normalized) variation between the two instruments; we find that both depend strongly on the photometric and instrumental conditions during the observation. The two instruments have a large absolute offset (>15%) due to their independent radiometric calibrations. However, they are very consistent (relative offset as low as 1%) when each instrument's response is normalized at a single wavelength, particularly at low phase angles where shadows on Bennu's rough surface are minimized. We recommend using the global datasets acquired at 12:30 pm local solar time for cross-comparisons; data acquired at higher phase angles have larger uncertainties.

2.
Space Sci Rev ; 218(4): 20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528719

RESUMO

NASA's first asteroid sample return mission, OSIRIS-REx, collected a sample from the surface of near-Earth asteroid Bennu in October 2020 and will deliver it to Earth in September 2023. Selecting a sample collection site on Bennu's surface was challenging due to the surprising lack of large ponded deposits of regolith particles exclusively fine enough ( ≤ 2 cm diameter) to be ingested by the spacecraft's Touch-and-Go Sample Acquisition Mechanism (TAGSAM). Here we describe the Sampleability Map of Bennu, which was constructed to aid in the selection of candidate sampling sites and to estimate the probability of collecting sufficient sample. "Sampleability" is a numeric score that expresses the compatibility of a given area's surface properties with the sampling mechanism. The algorithm that determines sampleability is a best fit functional form to an extensive suite of laboratory testing outcomes tracking the TAGSAM performance as a function of four observable properties of the target asteroid. The algorithm and testing were designed to measure and subsequently predict TAGSAM collection amounts as a function of the minimum particle size, maximum particle size, particle size frequency distribution, and the tilt of the TAGSAM head off the surface. The sampleability algorithm operated at two general scales, consistent with the resolution and coverage of data collected during the mission. The first scale was global and evaluated nearly the full surface. Due to Bennu's unexpected boulder coverage and lack of ponded regolith deposits, the global sampleability efforts relied heavily on additional strategies to find and characterize regions of interest based on quantifying and avoiding areas heavily covered by material too large to be collected. The second scale was site-specific and used higher-resolution data to predict collected mass at a given contact location. The rigorous sampleability assessments gave the mission confidence to select the best possible sample collection site and directly enabled successful collection of hundreds of grams of material.

3.
J Geophys Res Planets ; 126(2): e2020JE006624, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33777607

RESUMO

We describe the capabilities, radiometric stability, and calibration of a custom vacuum environment chamber capable of simulating the near-surface conditions of airless bodies. Here we demonstrate the collection of spectral measurements of a suite of fine particulate asteroid analogs made using the Planetary Analogue Surface Chamber for Asteroid and Lunar Environments (PASCALE) under conditions like those found on Earth and on airless bodies. The sample suite includes anhydrous and hydrated physical mixtures, and chondritic meteorites (CM, CI, CV, CR, and L5) previously characterized under Earth- and asteroid-like conditions. And for the first time, we measure the terrestrial and extra-terrestrial mineral end members used in the olivine- and phyllosilicate-dominated physical mixtures under the same conditions as the mixtures and meteorites allowing us better understand how minerals combine spectrally when mixed intimately. Our measurements highlight the sensitivity of thermal infrared emissivity spectra to small amounts of low albedo materials and the composition of the sample materials. As the albedo of the sample decreases, we observe smaller differences between Earth- and asteroid-like spectra, which results from a reduced thermal gradient in the upper hundreds of microns in the sample. These spectral measurements can be compared to thermal infrared emissivity spectra of asteroid (101955) Bennu's surface in regions where similarly fine particulate materials may be observed to infer surface compositions.

4.
J Geophys Res Planets ; 125(8): e2019JE006282, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999798

RESUMO

Asteroid (101955) Bennu, a near-Earth object with a primitive carbonaceous chondrite-like composition, was observed by the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft to undergo multiple particle ejection events near perihelion between December 2018 and February 2019. The three largest events observed during this period, which all occurred 3.5 to 6 hr after local noon, placed numerous particles <10 cm on temporary orbits around Bennu. Here we examine whether these events could have been produced by sporadic meteoroid impacts using the National Aeronautics and Space Administration's (NASA) Meteoroid Engineering Model 3.0. Most projectiles that impact Bennu come from nearly isotropic or Jupiter-family comets and have evolved toward the Sun by Poynting-Robertson drag. We find that 7,000-J impacts on Bennu occur with a biweekly cadence near perihelion, with a preference to strike in the late afternoon (~6 pm local time). This timing matches observations. Crater scaling laws also indicate that these impact energies can reproduce the sizes and masses of the largest observed particles, provided the surface has the cohesive properties of weak, porous materials. Bennu's ejection events could be caused by the same kinds of meteoroid impacts that created the Moon's asymmetric debris cloud observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE). Our findings also suggest that fewer ejection events should take place as Bennu moves further away from the Sun, a result that can be tested with future observations.

5.
J Geophys Res Planets ; 125(3): e2019JE006284, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32714726

RESUMO

This paper explores the implications of the observed Bennu particle ejection events for that asteroid's spin rate and orbit evolution, which could complicate interpretation of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) and Yarkovsky effects on this body's spin rate and orbital evolution. Based on current estimates of particle ejection rates, we find that the overall contribution to Bennu's spin and orbital drift is small or negligible as compared to the Yarkovsky and YORP effects. However, if there is a large unseen component of smaller mass ejections or a strong directionality in the ejection events, it could constitute a significant contribution that could mask the overall YORP effect. This means that the YORP effect may be stronger than currently assumed. The analysis is generalized so that the particle ejection effect can be assessed for other bodies that may be subject to similar mass loss events. Further, our model can be modified to address different potential mechanisms of particle ejection, which are a topic of ongoing study.

6.
Space Sci Rev ; 216(1): 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025061

RESUMO

The OSIRIS-REx Camera Suite (OCAMS) onboard the OSIRIS-REx spacecraft is used to study the shape and surface of the mission's target, asteroid (101955) Bennu, in support of the selection of a sampling site. We present calibration methods and results for the three OCAMS cameras-MapCam, PolyCam, and SamCam-using data from pre-flight and in-flight calibration campaigns. Pre-flight calibrations established a baseline for a variety of camera properties, including bias and dark behavior, flat fields, stray light, and radiometric calibration. In-flight activities updated these calibrations where possible, allowing us to confidently measure Bennu's surface. Accurate calibration is critical not only for establishing a global understanding of Bennu, but also for enabling analyses of potential sampling locations and for providing scientific context for the returned sample.

7.
Earth Space Sci ; 7(9): e2019EA000937, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33043099

RESUMO

The OSIRIS-REx mission has observed multiple instances of particles being ejected from the surface of near-Earth asteroid (101955) Bennu. The ability to quickly identify the particle trajectories and origins is necessary following a particle ejection event. Using proven initial orbit determination techniques, we can rapidly estimate particle trajectories and ejection locations. We present current results pertaining to the identification of particle tracks, an evaluation of the estimated orbits and the excess velocity necessary to induce the particle ejection from the surface, and the uncertainty quantification of the ejection location. We estimate energies per particle ranging from 0.03 to 11.03 mJ for the largest analyzed events and velocities ranging from 5 to 90 cm/s, though we exclude the highest-velocity particles in this technique. We estimate ejection times for eight events and constrain six of the analyzed ejection events to have occurred between about 16:30 and 19:00 local solar time, with the largest events occurring between 16:30 and 18:05.

8.
Icarus ; 319: 312-333, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32908320

RESUMO

We consider an impact on an asteroid that is energetic enough to cause resurfacing by seismic reverberation and just below the catastrophic disruption threshold, assuming that seismic waves are not rapidly attenuated. In asteroids with diameter less than 1 km we identify a regime where rare energetic impactors can excite seismic waves with frequencies near those of the asteroid's slowest normal modes. In this regime, the distribution of seismic reverberation is not evenly distributed across the body surface. With mass-spring model elastic simulations, we model impact excitation of seismic waves with a force pulse exerted on the surface and using three different asteroid shape models. The simulations exhibit antipodal focusing and normal mode excitation. If the impulse excited vibrational energy is long lasting, vibrations are highest at impact point, its antipode and at high surface elevations such as an equatorial ridge. A near equatorial impact launches a seismic impulse on a non-spherical body that can be focused on two additional points on an the equatorial ridge. We explore simple flow models for the morphology of vibration induced surface slumping. We find that the initial seismic pulse is unlikely to cause large shape changes. Long lasting seismic reverberation on Bennu caused by a near equatorial impact could have raised the height of its equatorial ridge by a few meters and raised two peaks on it, one near impact site and the other near its antipode.

9.
Space Sci Rev ; 214(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-30713357

RESUMO

OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA