Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 41(9): 1283-1294, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29789929

RESUMO

Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.


Assuntos
Acetona/metabolismo , Reatores Biológicos , Butanóis/metabolismo , Simulação por Computador , Etanol/metabolismo , Modelos Biológicos
2.
Chemosphere ; 291(Pt 3): 133051, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34826441

RESUMO

This study evaluated the performance of a passive multi-unit field-pilot operating for 16 months to treat acid mine drainage (AMD) from a coal mine in Colombia Andean Paramo. The multi-unit field-pilot involved a combination of a pre-treatment unit (550 L) filled with dispersed alkaline substrate (DAS), and six passive biochemical reactors (PBRs; 220 L) under two configurations: open (PBRs-A) and closed (PBRs-B) to the atmosphere. The AMD quality was 1200 ± 91 mg L-1 Fe, 38.0 ± 1.3 mg L-1 Mn, 8.5 ± 1.6 mg L-1 Zn, and 3200 ± 183.8 mg L-1 SO42-, at pH 2.8. The input and output effluents were monitored to establish AMD remediation. Physicochemical stability of the post-treatment solids, including metals (Fe2+, Zn2+, and Mn2+) and sulfates for environmental contamination from reactive mixture post-treatment, was also assessed. The passive multi-unit field-pilot achieved a total removal of 74% SO42-, 63% Fe2+, and 48% Mn2+ with the line of PBRs-A, and 91% SO42-, 80% Fe2+, and 66% Mn2+ with the line of PBRs-B, as well as 99% removal for Zn2+ without significant differences (p < 0.05) between the two lines. The study of the physicochemical stability of the post-treatment solids showed they can produce acidic leachates that could release large quantities of Fe and Mn, if they are disposed in oxidizing conditions; contact with water or any other leaching solutions must be avoided. Therefore, these post-treatment solids cannot be disposed of in a municipal landfill. The differences in configuration between PBRs, open or closed to the atmosphere, induced changes in the performance of the passive multi-unit field-pilot during AMD remediation.


Assuntos
Resíduos Sólidos , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Metais , Mineração , Poluentes Químicos da Água/análise
3.
iScience ; 24(3): 102236, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748718

RESUMO

Human milk oligosaccharides (HMOs), the third most abundant solid component of human milk, are reported to be beneficial to infant health. The biosynthesis of lacto-N-biose (LNB), the building block for HMOs, suffers from excessive addition of cofactors and intermediate inhibition. Here, we developed an in vitro multienzyme cascade composed of LNB module, ATP regeneration, and pyruvate oxidase-driven phosphate recycling to produce LNB. The integration between ATP regeneration and Pi alleviation increased the LNB conversion ratio and resulted in a ΔG'° decrease of 540 KJ/mol. Under optimal conditions, the LNB conversion ratio was improved from 0.34 to 0.83 mol/mol GlcNAc and the ATP addition decreased to 50%. Finally, 0.96 mol/mol GlcNAc and 71.6 mg LNB g-1 GlcNAc h-1 of LNB yield was achieved in a 100-mL reaction system. The synergistic strategy not only paves the way for producing LNB but also facilitates other chemicals with multienzyme cascades.

4.
iScience ; 23(2): 100854, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32058965

RESUMO

Targeted metabolite analysis in combination with 13C-tracing is a convenient strategy to determine pathway activity in biological systems; however, metabolite analysis is limited by challenges in separating and detecting pathway intermediates with current chromatographic methods. Here, a hydrophilic interaction chromatography tandem mass spectrometry approach was developed for improved metabolite separation, isotopologue analysis, and quantification. The physiological responses of a Yarrowia lipolytica strain engineered to produce ∼400 mg/L α-ionone and temporal changes in metabolism were quantified (e.g., mevalonate secretion, then uptake) indicating bottleneck shifts in the engineered pathway over the course of fermentation. Dynamic labeling results indicated limited tricarboxylic acid cycle label incorporation and, combined with a measurable ATP shortage during the high ionone production phase, suggested that electron transport and oxidative phosphorylation may limit energy supply and strain performance. The results provide insights into terpenoid pathway metabolic dynamics of non-model yeasts and offer guidelines for sensor development and modular engineering.

5.
Microorganisms ; 6(1)2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473875

RESUMO

Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.

6.
São Paulo; s.n; ago.10, 2006. 176 p. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-450137

RESUMO

Frutose e Ácido Glicônico são produtos importados empregados em diferentes setores nas áreas química, farmacêutica e alimentícia, representando um mercado de dois milhões de dólares (US$ 2,0 milhões) por ano. Por sua vez, a sacarose pode ser empregada como matéria-prima para a obtenção destes produtos através de conversão enzimátiva empregando invertase e glicose-oxidase. O uso de biorreatores com membrana (MBR) mostra-se interessante em processos enzimáticos, pois, ao serem empregados em processos contínuos permitem, simultaneamente, produção e separação dos produtos, reduzindo a formação de subprodutos e, eventual, inibição da enzima por excesso de substrato ou produtos. A sacarose é convertida em xarope de açúcar invertido (solução equimolar de frutose e glicose) pela invertase (Bioinvert`marca registrada’, enzima comercial), seguido pela oxidação da glicose em ácido glicônico pela ação da glicose oxidase (GO). O processo de conversão multi-enzimático da sacarose foi obtido através da alimentação de sacarose (50 mM) em reator com membrana (MBR) contendo invertase (24 U/mL), glicose-oxidase (0,5 U/mL) e catalase (470 U/mL) e operando com vazão específica de 6,0 ‘h POT. -1’, 35`graus’C e pH 5,5. As condições operacionais otimizadas possibilitaram a conversão completa da sacarose (X = 100 %) e da glicose resultante (Y = 100%) com velocidades específicas de reação de 4,2 mmol/U.h, 0,60 mmol/U.h e 0,00062 mmol/U.h, respectivamente, para a invertase, glicose oxidase e catalase. A respeito da oxidação da glicose, a adição de catalase no meio reacional se fez necessária para minimizar os efeitos inibitórios sobre a GO através do peróxido de hidrogênio formado


The fructose and gluconic acid are products of great application in chemical, pharmaceutical and food industry. The actual Brazilian market for these compounds is about US$ 2 millions, here as the sucrose, the raw-material used for their production, represents about 2.4% of the Brazil's GNP. This conversion increases the value added to the sugarcane, usually marketed as a commodity, because the fructose and gluconic acid are more valuable products than sucrose. The use of membrane bioreactor (MBR), which operates under mild conditions regarding internal pressure, temperature and pH, has been growing along the years for enzyme catalyzed processes. Moreover, in the MBR the reaction and separation of the products occur simultaneously, avoiding the formation of by-products and the eventual inhibition of the enzyme caused by excess of substrate or products. The sucrose is converted to the inverted syrup (an equimolar solution of fructose and glucose) by invertase (in this work was employed Bioinvert®, a commercial invertase) followed by the oxidation of glucose in gluconic acid by the glucose oxidase (GO). The multi-enzymatic conversion of sucrose was attained when carried out under initial substrate of 50mM and invertase, glucose oxidase and catalase concentrations, respectively, of 24.0 U/mL, 0.5 U/mL and 470 U/mL in a membrane reactor utilizing a dilution rate of 6.0 h-1, 35ºC and pH 5.5. The optimized operational conditions led to a conversion yield of 100% for sucrose hydrolysis and glucose oxidation steps resulting in enzyme productivity of 4.2 mmol/U.h, 0.60 mmol/U.h and 0.00062 mmol/U.h, respectively, to invertase, glucose oxidase and catalase. In regard to the glucose oxidation, the addition of catalase in the reaction medium was necessary, in order to minimize the inhibition of the GO by the hydrogen peroxide formed.


Assuntos
Reatores Biológicos , Biotecnologia , Frutose , Sacarose , Inibidores Enzimáticos , Peróxido de Hidrogênio
7.
São Paulo; s.n; 2006. 102 p. tab, graf.
Tese em Português | LILACS | ID: lil-441491

RESUMO

A conversão enzimática da sacarose pela ação sucessiva da invertase e da glicose oxidase (GOD), permite obter produtos de maior valor agregado, a saber, frutose e o ácido glicônico, dois produtos de amplo uso na indústria farmacêutica, alimentícia e química. Foi estudada a aplicação da invertase imobilizada em resinas aniônicas do tipo Dowex® (um copolímero de poliestireno-divinilbenzeno) sobre a hidrólise da sacarose bem como a oxidação da glicose pela glicose oxidase solúvel ou imobilizada no mesmo suporte em separado (sistema bifásico), utilizando-se um reator de membrana acoplado à membrana de ultrafiltração (100kDa) ou de microfitração (5µm). Posteriormente, avaliou-se o desempenho de ambas as formas de enzimas, solúveis ou imobilizadas num sistema monofásico empregando o mesmo reator...


The enzymatic conversion of sucrose through a successive action of invertase and glucose oxidase (GOO) allows the obtainment of products with higher commercial value, fructose and gluconic acid, which are widely used in pharmaceutical, food and chemical industries. Invertase and GOO immobilized on Dowex® anionic resin (a polystyrene divinylbenzene copolymer) as well as soluble GOD were used in a membrane bioreactor (MS) for sucrose hydrolysis and glucose oxidation. The MB was coupled with a UF-membrane (100kDa) or a MF-membrane (5µm). The bioconversion was conducted in two steps (biphasic system) as well as in one step (monophasic system). The bioconversion operated in a biphasic system permitted obtaining a fructose syrup with a concentration of about 70% through a separation of glucose and fructose using a cationic resin, 50W:8-100. As for the monophasic system, the yield of 96.6% and 67.4% for soluble and immobilized forms were attained respectively. No leakage of the enzymes from the support allowed the use of a microfiltration membrane, adding advantages to the membrane bioreactor operation.


Assuntos
Reatores Biológicos , Biotecnologia , Enzimas Imobilizadas , Frutose , Sacarose , Fermentação , Hidrólise , Ultrafiltração/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA