Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(23): 3717-3728, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665061

RESUMO

To investigate the effect and mechanism of polydatin on bleomycin (BLM)-induced pulmonary fibrosis in a mouse model. The lung fibrosis model was induced by BLM. The contents of TNF-α, LPS, IL-6 and IL-1ß in lung tissue, intestine and serum were detected by ELISA. Gut microbiota diversity was detected by 16S rDNA sequencing; R language was used to analyse species composition, α-diversity, ß-diversity, species differences and marker species. Mice were fed drinking water mixed with four antibiotics (ampicillin, neomycin, metronidazole, vancomycin; antibiotics, ABx) to build a mouse model of ABx-induced bacterial depletion; and faecal microbiota from different groups were transplanted into BLM-treated or untreated ABx mice. The histopathological changes and collagen I and α-SMA expression were determined. Polydatin effectively reduced the degree of fibrosis in a BLM-induced pulmonary fibrosis mouse model; BLM and/or polydatin affected the abundance of the dominant gut microbiota in mice. Moreover, faecal microbiota transplantation (FMT) from polydatin-treated BLM mice effectively alleviated lung fibrosis in BLM-treated ABx mice compared with FMT from BLM mice. Polydatin can reduce fibrosis and inflammation in a BLM-induced mouse pulmonary fibrosis model. The alteration of gut microbiota by polydatin may be involved in the therapeutic effect.


Assuntos
Microbioma Gastrointestinal , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Bleomicina/farmacologia , Pulmão/patologia , Fibrose , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos Endogâmicos C57BL
2.
Electromagn Biol Med ; 41(1): 25-34, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34541970

RESUMO

The study aimed to evaluate the possibility to perform electrochemotherapy using nanosecond pulsed electric field (nsPEF) and low electric field (LEF) monopolar electrical impulses to alleviate the problems of conventional electroporation. Two types of pulses have been used to treat MCF-7 human breast carcinoma cell line: very low voltage (electric field strength) long trains of short unipolar electric pulses, and low frequencies of extremely intense (40kV/cm), ultra-short (10ns) electric pulses. The electropermeabilization efficiency of the formed endocytotic vesicles was measured using the cloning efficacy test. The cell viability was decreased significantly at a repetition frequency begins from 0.01 Hz by ~35% and reached complete cell loss at 1 Hz of nanosecond pulses for cells treated before with monopolar pulses at 20 V/cm in the presence of BLM with 4 µM concentration. The uptake of non-permeant drugs has been done without plasma membrane permeabilization (classical electroporation), but by endocytosis. Nanosecond electric pulses can disrupt the membrane of endocytotic vesicles and release the cytotoxic drug bleomycin.


Assuntos
Antineoplásicos , Neoplasias da Mama , Eletroquimioterapia , Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Sobrevivência Celular , Eletroporação , Feminino , Humanos
3.
J Proteome Res ; 19(8): 2950-2963, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32618472

RESUMO

Bleomycin (BLM)-induced pulmonary fibrosis is characterized by inflammation in the alveoli, subsequent deposition of extracellular matrix (ECM) and myofibroblasts, and an impaired fibrinolytic system. Here, we describe major hematological changes, the IL-17A-mediated p53-fibrinolytic pathway, and the high throughput hits of liquid chromatography-mass spectrometry (LC-MS) analysis during the progression of pulmonary fibrosis and the therapeutic potential of curcumin against disease progression. C57BL/6 mice were exposed to BLM, followed by curcumin intervention after 24 and 48 h. Mice were sacrificed after 7 days to validate the hematological parameters, molecular pathways, and proteomics. Various techniques such as western blotting, immunofluorescence, reverse transcriptase polymerase chain reaction (RT-PCR), hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry were used to validate the proposed theory. LC-MS analysis was performed using a Q-Orbitrap mass spectrometer. The Schrödinger approach was used to perform the in silico molecular docking studies. BLM-exposed mice exhibited gradual weight loss and altered lung morphology; however, these were reversed by curcumin treatment. Significant changes in the hematological parameters confirmed the severity of BLM exposure in the mice, and expression of IL-17A-mediated p53-fibrinolytic system components and alveolar epithelial cell (AEC) apoptosis further confirmed the pathophysiology of pulmonary fibrosis. Differentially expressed proteins were characterized and mapped using the proteomics approach. A strong interaction of curcumin is observed with p53, uPA, and PAI-I proteins. The key role of IL-17A-mediated inflammation in the impairment of the p53-fibrinolytic system and AEC apoptosis was confirmed during BLM-induced pulmonary fibrosis. Therapeutic efficacy of curcumin exhibited a protective role against the progression of pulmonary fibrosis, which promises potent therapeutic modality to target the IL-17A-mediated p53-fibrinolytic system during pulmonary fibrosis.


Assuntos
Curcumina , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Curcumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteômica , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico
4.
Rep Pract Oncol Radiother ; 24(4): 392-398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293363

RESUMO

Sacrococcygeal teratoma is the most common germ cell neoplasia that consists of tissues derived from primitive germ layers. Approximately 10-20% of patients are malignant. Because of the high rate of recurrence, treatment strategies for malignant sacrococcygeal teratomas are limited. Hence, we report a case of malignant sacrococcygeal teratoma treated with concurrent chemoradiotherapy plus adjuvant chemotherapy and review the literature. This case report indicates that chemoradiation plus adjuvant chemotherapy may be a treatment option for malignant SCT which is not technically resectable or with residual lesion after surgery.

5.
Pharmacol Res ; 97: 122-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25959210

RESUMO

Bleomycin (BLM) is a drug used to treat different types of neoplasms. BLM's most severe adverse effect is lung toxicity, which induces remodeling of lung architecture and loss of pulmonary function, rapidly leading to death. While its clinical role as an anticancer agent is limited, its use in experimental settings is widespread since BLM is one of the most widely used drugs for inducing lung fibrosis in animals, due to its ability to provoke a histologic lung pattern similar to that described in patients undergoing chemotherapy. This pattern is characterized by patchy parenchymal inflammation, epithelial cell injury with reactive hyperplasia, epithelial-mesenchymal transition, activation and differentiation of fibroblasts to myofibroblasts, basement membrane and alveolar epithelium injuries. Several studies have demonstrated that BLM damage is mediated by DNA strand scission producing single- or double-strand breaks that lead to increased production of free radicals. Up to now, the mechanisms involved in the development of pulmonary fibrosis have not been fully understood; several studies have analyzed various potential biological molecular factors, such as transforming growth factor beta 1, tumor necrosis factor alpha, components of the extracellular matrix, chaperones, interleukins and chemokines. The aim of this paper is to review the specific characteristics of BLM-induced lung fibrosis in different animal models and to summarize modalities and timing of in vivo drug administration. Understanding the mechanisms of BLM-induced lung fibrosis and of commonly used therapies for counteracting fibrosis provides an opportunity for translating potential molecular targets from animal models to the clinical arena.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Animais , Bleomicina/antagonistas & inibidores , Humanos , Fibrose Pulmonar/patologia
6.
Biomolecules ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927026

RESUMO

Mesenchymal stem/stromal cell-derived small extracellular vesicles (MSC-sEVs) are promising therapeutic agents. In this study, we investigated how the administration route of MSC-sEVs affects their therapeutic efficacy in a mouse model of bleomycin (BLM)-induced skin scleroderma (SSc). We evaluated the impact of topical (TOP), subcutaneous (SC), and intraperitoneal (IP) administration of MSC-sEVs on dermal fibrosis, collagen density, and thickness. All three routes of administration significantly reduced BLM-induced fibrosis in the skin, as determined by Masson's Trichrome staining. However, only TOP administration reduced BLM-induced dermal collagen density, with no effect on dermal thickness observed for all administration routes. Moreover, SC, but not TOP or IP administration, increased anti-inflammatory profibrotic CD163+ M2 macrophages. These findings indicate that the administration route influences the therapeutic efficacy of MSC-sEVs in alleviating dermal fibrosis, with TOP administration being the most effective, and this efficacy is not mediated by M2 macrophages. Since both TOP and SC administration target the skin, the difference in their efficacy likely stems from variations in MSC-sEV delivery in the skin. Fluorescence-labelled TOP, but not SC MSC-sEVs when applied to skin explant cultures, localized in the stratum corneum. Hence, the superior efficacy of TOP over SC MSC-sEVs could be attributed to this localization. A comparison of the proteomes of stratum corneum and MSC-sEVs revealed the presence of >100 common proteins. Most of these proteins, such as filaggrin, were known to be crucial for maintaining skin barrier function against irritants and toxins, thereby mitigating inflammation-induced fibrosis. Therefore, the superior efficacy of TOP MSC-sEVs over SC and IP MSC-sEVs against SSc is mediated by the delivery of proteins to the stratum corneum to reinforce the skin barrier.


Assuntos
Bleomicina , Vesículas Extracelulares , Células-Tronco Mesenquimais , Pele , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Vesículas Extracelulares/metabolismo , Pele/patologia , Pele/metabolismo , Pele/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Feminino , Proteínas Filagrinas , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Vias de Administração de Medicamentos , Humanos
7.
Heliyon ; 9(5): e15681, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180915

RESUMO

Introduction: Microcomputed tomography (micro-CT) is powerful for assessment of the progression of lung fibrosis in animal model, but current whole lung analysis (WLA) methods are time-consuming. Here, a longitudinal and regional analysis (LRA) method was developed to assess fibrosis easily and quickly by micro-CT. Method: Firstly, we investigated the distribution pattern of lesions in BLM-induced pulmonary fibrosis mice. Then, the VOIs for LRA were selected based on the anatomical locations and we compared the robustness, accuracy, repeatability, analysis time of LRA to WLA. Additionally, LRA was applied to assess different stages of pulmonary fibrosis, and was validated with conventional endpoint measurements (such as lung hydroxyproline and histopathology). Results: The lesions of fibrosis in 66 bleomycin (BLM)-induced pulmonary fibrosis mice were mostly in the middle and upper parts of lungs. By applying LRA, the percentages of high-density voxels in selected volumes of interest (VOIs) were well correlated with that in WLA both at Day 7 and Day 21 after bleomycin induction (R2 = 0.8784 and 0.8464, respectively). The relative standard deviation (RSD) of the percentage of high-density voxels in the VOIs was lower than that of WLA (P < 0.05). The cost time of LRA was shorter than that of WLA (P < 0.05) and the accuracy of LRA was further confirmed by the histological analysis and biochemical quantification of hydroxyproline. Conclusion: LRA is probably an easier and more time-saving method to assess fibrosis formation and evaluate treatment efficacy.

8.
Front Med (Lausanne) ; 10: 1195501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746070

RESUMO

Introduction: Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease with dismal prognosis. The underlying pathogenic mechanisms are poorly understood, resulting in a lack of effective treatments. However, recurrent epithelial damage is considered critical for disease initiation and perpetuation, via the secretion of soluble factors that amplify inflammation and lead to fibroblast activation and exuberant deposition of ECM components. Lipocalin-2 (LCN2) is a neutrophil gelatinase-associated lipocalin (NGAL) that has been suggested as a biomarker of kidney damage. LCN2 has been reported to modulate innate immunity, including the recruitment of neutrophils, and to protect against bacterial infections by sequestering iron. Methods: In silico analysis of publicly available transcriptomic datasets; ELISAs on human IPF patients' bronchoalveolar lavage fluids (BALFs); bleomycin (BLM)-induced pulmonary inflammation and fibrosis and LPS-induced acute lung injury (ALI) in mice: pulmonary function tests, histology, Q-RT-PCR, western blot, and FACS analysis. Results and discussion: Increased LCN2 mRNA expression was detected in the lung tissue of IPF patients negatively correlating with respiratory functions, as also shown for BALF LCN2 protein levels in a cohort of IPF patients. Increased Lcn2 expression was also detected upon BLM-induced pulmonary inflammation and fibrosis, especially at the acute phase correlating with neutrophilic infiltration, as well as upon LPS-induced ALI, an animal model characterized by neutrophilic infiltration. Surprisingly, and non withstanding the limitations of the study and the observed trends, Lcn2-/- mice were found to still develop BLM- or LPS-induced pulmonary inflammation and fibrosis, thus questioning a major pathogenic role for Lcn2 in mice. However, LCN2 qualifies as a surrogate biomarker of pulmonary inflammation and a possible indicator of compromised pulmonary functions, urging for larger studies.

9.
Front Microbiol ; 14: 1146496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168111

RESUMO

Introduction: DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. Methods: In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. Results: We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Discussion: Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.

10.
Front Immunol ; 14: 1189960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304301

RESUMO

Introduction: In calcium electroporation (CaEP), electroporation enables the cellular uptake of supraphysiological concentrations of Ca2+, causing the induction of cell death. The effectiveness of CaEP has already been evaluated in clinical trials; however, confirmatory preclinical studies are still needed to further elucidate its effectiveness and underlying mechanisms. Here, we tested and compared its efficiency on two different tumor models to electrochemotherapy (ECT) and in combination with gene electrotransfer (GET) of a plasmid encoding interleukin-12 (IL-12). We hypothesized that IL-12 potentiates the antitumor effect of local ablative therapies as CaEP and ECT. Methods: The effect of CaEP was tested in vitro as well as in vivo in murine melanoma B16-F10 and murine mammary carcinoma 4T1 in comparison to ECT with bleomycin. Specifically, the treatment efficacy of CaEP with increasing calcium concentrations alone or in combination with IL-12 GET in different treatment protocols was investigated. We closely examined the tumor microenvironment by immunofluorescence staining of immune cells, as well as blood vessels and proliferating cells. Results: In vitro, CaEP and ECT with bleomycin reduced cell viability in a dose-dependent manner. We observed no differences in sensitivity between the two cell lines. A dose-dependent response was also observed in vivo; however, the efficacy was better in 4T1 tumors than in B16-F10 tumors. In 4T1 tumors, CaEP with 250 mM Ca resulted in more than 30 days of growth delay, which was comparable to ECT with bleomycin. In contrast, adjuvant peritumoral application of IL-12 GET after CaEP prolonged the survival of B16-F10, but not 4T1-bearing mice. Moreover, CaEP with peritumoral IL-12 GET modified tumor immune cell populations and tumor vasculature. Conclusions: Mice bearing 4T1 tumors responded better to CaEP in vivo than mice bearing B16-F10 tumors, even though a similar response was observed in vitro. Namely, one of the most important factors might be involvement of the immune system. This was confirmed by the combination of CaEP or ECT with IL-12 GET, which further enhanced antitumor effectiveness. However, the potentiation of CaEP effectiveness was also highly dependent on tumor type; it was more pronounced in poorly immunogenic B16-F10 tumors compared to moderately immunogenic 4T1 tumors.


Assuntos
Cálcio , Interleucina-12 , Animais , Camundongos , Interleucina-12/genética , Terapia com Eletroporação , Eletroporação , Bleomicina
11.
Ann Transl Med ; 9(9): 764, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34268377

RESUMO

BACKGROUND: Andrographolide (Andro), a diterpenoid extracted from Andrographis paniculata, has been shown to attenuate pulmonary fibrosis in rodents; however, the potential mechanisms remain largely unclear. This study investigated whether and how Andro alleviates bleomycin (BLM)-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and epithelial-mesenchymal transition (EMT) in the lung epithelial cells. METHODS: The in vivo effects of Andro were evaluated in a rat model of BLM-induced pulmonary fibrosis. The roles of Andro in BLM-induced NLRP3 inflammasome activation, EMT and AKT/mTOR signaling were investigated using human alveolar epithelial A549 cells. RESULTS: We found that Andro significantly alleviated pulmonary edema and histopathological changes, decreased weight loss, and reduced collagen deposition. Andro downregulated the levels of NLRP3, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in the lungs of BLM-treated rats, suggesting the inhibitory effect of Andro on NLRP3 inflammasome activation in vivo. Additionally, the symptoms of BLM-mediated EMT phenotype in the lung were also attenuated after Andro administration. In vitro, Andro also markedly inhibited BLM-induced NLRP3 inflammasome activation and EMT in A549 cells. Moreover, Andro inhibited BLM-induced phosphorylation of AKT and mTOR in A549 cells, suggesting that AKT/mTOR inactivation mediates Andro-induced effects on BLM-induced NLRP3 inflammasome activation and EMT. CONCLUSIONS: These data indicate that Andro can reduce BLM-induced pulmonary fibrosis through suppressing NLRP3 inflammasome activation and EMT in lung epithelial cells via AKT/mTOR signaling pathway.

12.
J Biomech ; 98: 109468, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31708243

RESUMO

Idiopathic pulmonary fibrosis is a progressively fatal disease with limited treatments. The bleomycin mouse model is often used to simulate the disease process in laboratory studies. The aim of this study was to develop an ex vivo technique for assessing mice lung injury using lung ultrasound surface wave elastography (LUSWE) in the bleomycin mouse model. The surface wave speeds were measured at three frequencies of 100, 200, and 300 Hz for mice lungs from control, mild, and severe groups. The results showed significant differences in the lung surface wave speeds, pulse oximetry, and compliance between control mice and mice with severe pulmonary fibrosis. LUSWE is an evolving technique for evaluating lung stiffness and may be useful for assessing pulmonary fibrosis in the bleomycin mouse model.


Assuntos
Técnicas de Imagem por Elasticidade , Lesão Pulmonar/diagnóstico por imagem , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL
13.
Arthritis Res Ther ; 22(1): 20, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033616

RESUMO

BACKGROUND: Interstitial lung disease (ILD) is a serious complication of connective tissue diseases (CTDs). Although immune dysregulation triggered by genetic and environmental factors is thought to provoke inflammation and subsequent fibrosis, precise mechanisms of these processes remain unclear. Recent reports suggest that activation of aryl hydrocarbon receptor (AhR) signals by various ligands such as tryptophan derivatives can induce hyper-immune responses and are involved in autoimmunity. We investigated the effects of AhR signals on the process of lung fibrosis and changes in immunological features using a bleomycin (BLM)-induced lung fibrosis mouse model. METHODS: BLM was administered intratracheally to C57BL/6JJcl mice and either 5,11-dihydroindolo[3,2-b]carbazole-6-carboxaldehyde (FICZ), a natural AhR ligand, or vehicle was subsequently injected intraperitoneally on day 0, 1, and 2 from BLM administration. Mice were sacrificed at week 3, and lung fibrosis was quantified by the histological changes using the Ashcroft score and deposition of soluble collagen levels in the lung using Sircol assay. The population of immune cells infiltrated into the lungs was analyzed using flow cytometry. RESULTS: Both the Ashcroft score and soluble collagen level in FICZ-treated mice were significantly lower than those in the vehicle group. Moreover, the survival rate of FICZ-treated mice was significantly higher than that of control mice during the 3 weeks after treatment. Interestingly, flow cytometric analysis revealed that the number of CD4+Foxp3+ regulatory T cells (Tregs) was significantly increased and CD4+IFNγ+ and γδ+IL-17A+ T cells were decreased in the lungs of FICZ-treated mice, while the total number of T, B, and NK cells were unaffected by FICZ treatment. CONCLUSIONS: Our findings suggest that stimulation of AhR signals attenuated lung fibrosis by increasing Tregs and suppressing inflammatory T cell subsets in a BLM-induced fibrosis model. AhR signaling pathways may therefore be useful therapeutic targets for connective tissue disease-associated ILD.


Assuntos
Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo
14.
Adv Pharm Bull ; 10(1): 72-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32002364

RESUMO

Purpose: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder with few available treatments. Mesenchymal stem cell therapy (MSCT), an innovative approach, has high therapeutic potential when used to treat IPF. According to recent data, preconditioning of MSCs can improve their therapeutic effects. Our research focuses on investigating the anti-inflammatory and antifibrotic effects of H2 O2 -preconditioned MSCs (p-MSCs) on mice with bleomycin-induced pulmonary fibrosis (PF). Methods: Eight-week-old male C57BL/6 mice were induced with PF by intratracheal (IT) instillation of bleomycin (4 U/kg). Human umbilical cord vein-derived MSCs (hUCV-MSCs) were isolated and exposed to a sub-lethal concentration (15 µM for 24 h) of H2 O2 in vitro. One week following the injection of bleomycin, 2×105 MSCs or p-MSCs were injected (IT) into the experimental PF. The survival rate and weight of mice were recorded, and 14 days after MSCs injection, all mice were sacrificed. Lung tissue was removed from these mice to examine the myeloperoxidase (MPO) activity, histopathological changes (hematoxylin-eosin and Masson's trichrome) and expression of transforming growth factor beta 1 (TGF-ß1) and alpha-smooth muscle actin (α-SMA) through immunohistochemistry (IHC) staining. Results: Compared to the PF+MSC group, p-MSCs transplantation results in significantly decreased connective tissue (P<0.05) and collagen deposition. Additionally, it is determined that lung tissue in the PF+pMSC group has increased alveolar space (P<0.05) and diminished expression of TGF-ß1 and α-SMA. Conclusion: The results demonstrate that MSCT using p-MSCs decreases inflammatory and fibrotic factors in bleomycin-induced PF, while also able to increase the therapeutic potency of MSCT in IPF.

15.
Inflammation ; 42(4): 1160-1169, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31011925

RESUMO

Acute lung injury (ALI) is characterized by acute inflammation and tissue injury results in dysfunction of the alveolar epithelial membrane. If the epithelial injury is severe, a fibroproliferative phase of ALI can develop. During this phase, the activated fibroblast and myofibroblasts synthesize excessive collagenous extracellular matrix that leads to a condition called pulmonary fibrosis. Lung injury can be caused by several ways; however, the present review focus on bleomycin (BLM)-mediated changes in the pathology of lungs. BLM is a chemotherapeutic agent and has toxic effects on lungs, which leads to oxidative damage and elaboration of inflammatory cytokines. In response to the injury, the inflammatory cytokines will be activated to defend the system from injury. These cytokines along with growth factors stimulate the proliferation of myofibroblasts and secretion of pathologic extracellular matrix. During BLM injury, the pro-inflammatory cytokine such as IL-17A will be up-regulated and mediates the inflammation in the alveolar epithelial cell and also brings about recruitment of certain inflammatory cells in the alveolar surface. These cytokines probably help in up-regulating the expression of p53 and fibrinolytic system molecules during the alveolar epithelial cells apoptosis. Here, our key concern is to provide the adequate knowledge about IL-17A-mediated p53 fibrinolytic system and their pathogenic progression to pulmonary fibrosis. The present review focuses mainly on IL-17A-mediated p53-fibrinolytic aspects and how curcumin is involved in the regulation of pathogenic progression of ALI and pulmonary fibrosis.


Assuntos
Lesão Pulmonar Aguda/patologia , Curcumina/farmacologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Bleomicina/farmacologia , Humanos , Fibrose Pulmonar/etiologia , Proteína Supressora de Tumor p53/metabolismo
16.
Biomed Pharmacother ; 105: 841-847, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30021376

RESUMO

Although the initiation and modulation of lung fibrosis has been widely investigated, the pathogenesis was not well understood. Secreted modular calcium-binding protein 2 (SMOC2) as the secreted protein acidic is enriched in cysteine (SPARC) family of matricellular proteins, which are important in regulating cell-matrix interactions. Here we aimed to calculate the effects and molecular mechanism of SMOC2 on the progression and severity of lung fibrosis in murine bleomycin (BLM)-induced mice. The pulmonary fibrosis was significantly induced by BLM in wild type (WT) C57BL6 mice, as evidenced by the lung sections histology and collagen accumulation using H&E and Masson Trichrome staining. Notably, SMOC2 knockout (SMOC2-/-) mice treated with BLM exhibited the decrease in inflammation accompanied by the reduction of neutrophils, macrophages and lymphocytes in bronchoalveolar lavage fluids (BALF). In addition, the levels of inflammation-associated cytokines and chemokines induced by BLM were also decreased in BALF obtained from SMOC2-/- mice. Meanwhile, SMOC2-/- suppressed the progression of pulmonary fibrosis, as evidenced by the reduction in levels of transforming growth factor-ß1 (TGF-ß1), α-smooth muscle actin (α-SMA), p-SMAD2 and p-SMAD3 in lung tissue samples. Increasing expression of SMOC2 in TGF-ß1 treated cells were further observed in vitro. Of note, up regulation of SMOC2 activated-fibrosis development in MRC-5 cells, along with increase of α-SMA, p-SMAD2 and p-SMAD3 were determined. In contrast, SMOC2 knockdown reduced TGF-ß1-stimulated expressions of α-SMA, p-SMAD2 and p-SMAD3 in cells. The findings above suggested that SMOC2 knockout contributes to inhibit BLM-induced pulmonary fibrosis.


Assuntos
Bleomicina/toxicidade , Proteínas de Ligação ao Cálcio/deficiência , Fibrose Pulmonar/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Smad2/antagonistas & inibidores , Proteína Smad3/antagonistas & inibidores , Fator de Crescimento Transformador beta1/antagonistas & inibidores
17.
Front Med (Lausanne) ; 5: 269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30320115

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a fatal disease characterized by exuberant deposition of extracellular matrix components, deterioration of lung architecture and impairment of lung functions. Its etiopathogenesis remains incompletely understood, as reflected in the lack of an appropriate therapy. Modeling the human disease in mice via the administration of bleomycin (BLM), despite the inherent limitations, has provided valuable insights into the underlying pathogenetic mechanisms, and has been instrumental for the development and validation of new pharmacologic interventions. Here we have directly compared the, most widely used, intratracheal (IT) route of administration with oropharyngeal aspiration (OA). Our results suggest that the OA route of BLM-administration can be used as a safe and effective alternative, minimizing peri-operative and experimental mortality, while preserving a solid fibrotic profile, as assessed with a plethora of standardized readout assays.

18.
J Thorac Dis ; 9(1): 96-105, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28203411

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with severe pulmonary fibrosis. The main cause of IPF-associated death is acute exacerbation of IPF (AE-IPF). This study aims to develop a rat model of AE-IPF by two intratracheal perfusions with bleomycin (BLM). METHODS: Ninety male Sprague Dawley (SD) rats were randomized into three groups: an AE-IPF model group (BLM + BLM group), an IPF model group (BLM group), and a normal control group. Rats in the BLM + BLM group underwent a second perfusion with BLM on day 28 after the first perfusion with BLM. Rats in the other two groups received saline as the second perfusion. Six rats in each group were sacrificed on day 31, day 35, and day 42 after the first perfusion, respectively. Additional 18 rats in each group were observed for survival. RESULTS: Rats in the BLM + BLM group had significantly worse pulmonary alveolar inflammation and fibrosis than rats in the BLM group. Rats in the BLM + BLM group also developed large amounts of hyaline membrane, showed high levels of albumin (ALB) and various inflammatory factors in the bronchoalveolar lavage fluid (BALF), and had markedly increased lung water content. Furthermore, rat survival was reduced in the BLM + BLM group. The pathophysiological characteristics of rats in the BLM + BLM group resemble those of patients with AE-IPF. CONCLUSIONS: A second perfusion with BLM appears to induce acute exacerbation of pulmonary fibrosis and may be used to model AE-IPF in rats.

19.
Biomed Pharmacother ; 89: 1297-1309, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28320097

RESUMO

Idiopathic pulmonary fibrosis is known as a life-threatening disease with high mortality and limited therapeutic strategies. In addition, the molecular mechanism by which pulmonary fibrosis developed is not fully understood. Asiatic acid (AA) is a triterpenoid, isolated from Centella asiatica, exhibiting efficient anti-inflammatory and anti-oxidative activities. In our study, we attempted to explore the effect of Asiatic acid on bleomycin (BLM)-induced pulmonary fibrosis in mice. The findings indicated that pre-treatment with Asiatic acid inhibited BLM-induced lung injury and fibrosis progression in mice. Further, Asiatic acid down-regulates inflammatory cells infiltration in bronchoalveolar lavage fluid (BALF) and pro-inflammatory cytokines expression in lung tissue specimens induced by BLM. Also, Asiatic acid apparently suppressed transforming growth factor-beta 1 (TGF-ß1) expression in tissues of lung, accompanied with Collagen I, Collagen III, α-SMA and matrix metalloproteinase (TIMP)-1 decreasing, as well as Smads and ERK1/2 inactivation. Of note, Asiatic acid reduces NOD-like receptor, pyrin domain containing-3 (NLRP3) inflammasome. The findings indicated that Asiatic acid might be an effective candidate for pulmonary fibrosis and inflammation treatment.


Assuntos
Bleomicina/farmacologia , Inflamação/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Eur J Pharmacol ; 809: 64-72, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506908

RESUMO

Bleomycin (BLM) induced lung injury is detectable in C57BL/6 mice using magnetic resonance imaging (MRI). We investigated the effects of the fibroblast activation protein (FAP) inhibitor, PT100, in this model. BLM (0.5mg/kg/day) was administered on days -7, -6, -5, -2, -1, 0 in the nostrils of male mice. PT100 (40µg/mouse) or vehicle (0.9%NaCl) was dosed per os twice daily from day 1-14. MRI was performed before BLM and at days 0, 7 and 14. After the last MRI acquisition, animals were euthanised and the lungs harvested for histological and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. As evidenced longitudinally by MRI, the BLM-elicited lesions in the lungs of vehicle-treated mice progressed over time. In contrast, responses elicited by BLM did not progress in animals receiving PT100. Histology demonstrated significant less fibrosis in PT100- than in vehicle-treated, BLM-challenged mice. Significant correlation (R=0.91, P<0.001, N=24) was found between the volumes of BLM-induced lesions detected in vivo by MRI and the collagen content determined histologically (picrosirius staining). FAP was overexpressed in the lungs of BLM-challenged mice. Upon PT100 treatment, FAP expression was reduced. Significant differences in the MMP-12, MIP-1α, and MCP-3 mRNA expression levels in the lungs of PT100- compared to vehicle-treated mice were also revealed by qRT-PCR. The IBA-1 level determined histologically was higher in the lungs of PT100- compared to vehicle-treated mice. Taken together, these observations suggest that treatment with PT100 in this murine model of pulmonary fibrosis had an anti-fibro-proliferative effect and increased macrophage activation.


Assuntos
Ácidos Borônicos/farmacologia , Dipeptídeos/farmacologia , Gelatinases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/efeitos adversos , Peso Corporal/efeitos dos fármacos , Ácidos Borônicos/uso terapêutico , Dipeptídeos/uso terapêutico , Modelos Animais de Doenças , Endopeptidases , Regulação da Expressão Gênica/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/genética , Serina Endopeptidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA