Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39089253

RESUMO

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.

2.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
3.
Brain ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743595

RESUMO

The integrity of the blood-CSF barrier plays a major role in inflammation, but also in shielding the central nervous system from external and systemic - potentially toxic - factors. Here we report results of measurements of the albumin quotient - which is thought to mirror the integrity of the blood/CSF barrier - in 1059 amyotrophic lateral sclerosis patients. The results were compared with groups of patients suffering from Alzheimer´s disease, facial palsy and tension headache. The albumin quotient, an accepted measure of the blood/CSF barrier integrity, was not significantly different from control populations. In addition, we found that the albumin quotient correlated with survival of the patients; this effect was mainly driven by male patients and influenced by age, BMI and diabetes mellitus. We conclude that the blood/CSF barrier is intact in this large cohort of ALS patients and that the albumin quotient correlates with survival. Whether this is important for the pathogenesis of the disease, requires mechanistic studies.

4.
Neurobiol Dis ; 179: 106054, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842485

RESUMO

Nervous system is segregated from the body by the complex system of barriers. The CNS is protected by (i) the blood-brain and blood-spinal cord barrier between the intracerebral and intraspinal blood vessels and the brain parenchyma; (ii) the arachnoid blood-cerebrospinal fluid barrier; (iii) the blood-cerebrospinal barrier of circumventricular organs made by tanycytes and (iv) the choroid plexus blood-CSF barrier formed by choroid ependymocytes. In the peripheral nervous system the nerve-blood barrier is secured by tight junctions between specialised glial cells known as perineural cells. In the CNS astroglia contribute to all barriers through the glia limitans, which represent the parenchymal portion of the barrier system. Astroglia through secretion of various paracrine factors regulate the permeability of endothelial vascular barrier; in pathology damage or asthenia of astrocytes may compromise brain barriers integrity.


Assuntos
Astrócitos , Encéfalo , Astrócitos/patologia , Encéfalo/fisiologia , Barreira Hematoencefálica/fisiologia , Neuroglia , Junções Íntimas , Plexo Corióideo
5.
J Med Virol ; 95(2): e28472, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606611

RESUMO

The choroid plexus (ChP) is the source of cerebrospinal fluid (CSF). The ChP-CSF system not only provides the necessary cushion for the brain but also works as a sink for waste clearance. During sepsis, pathogens and host immune cells can weaken the ChP barrier and enter the brain, causing cerebral dysfunctions known as sepsis-associated encephalophagy. Here, we used human ChP organoid (ChPO) to model herpes simplex virus type 1 (HSV-1) infection and found ChP epithelial cells were highly susceptible to HSV-1. Since the current ChPO model lacks a functional innate immune component, particularly microglia, we next developed a new microglia-containing ChPO model, and found microglia could effectively limit HSV-1 infection and protect epithelial barrier in ChPOs. Furthermore, we found the innate immune cyclic GMP-AMP synthase (cGAS)-STING pathway and its downstream interferon response were essential, as cGAS inhibitor RU.512 or STING inhibitor H-151 abolished microglia antiviral function and worsened ChP barrier in organoids. These results together indicated that cGAS-STING pathway coordinates antiviral response in ChP and contributes to treating sepsis or related neurological conditions.


Assuntos
Antivirais , Herpesvirus Humano 1 , Humanos , Microglia/metabolismo , Plexo Corióideo/metabolismo , Transdução de Sinais , Imunidade Inata , Nucleotidiltransferases/metabolismo , Organoides
6.
NMR Biomed ; 36(3): e4852, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269104

RESUMO

For better quantification of perfusion with arterial spin labeling (ASL), partial volume correction (PVC) is used to disentangle the signals from gray matter (GM) and white matter within any voxel. Based on physiological considerations, PVC algorithms typically assume zero signal in the cerebrospinal fluid (CSF). Recent measurements, however, have shown that CSF-ASL signal can exceed 10% of GM signal, even when using recommended ASL labeling parameters. CSF signal is expected to particularly affect PVC results in the choroid plexus. This study aims to measure the impact of CSF signal on PVC perfusion measurements, and to investigate the potential use of PVC to retrieve pure CSF-ASL signal for blood-CSF barrier characterization. In vivo imaging included six pCASL sequences with variable label duration and post-labeling delay (PLD), and an eight-echo 3D-GRASE readout. A dataset was simulated to estimate the effect of CSF-PVC with known ground-truth parameters. Differences between the results of CSF-PVC and non-CSF-PVC were estimated for regions of interest (ROIs) based on GM probability, and a separate ROI isolating the choroid plexus. In vivo, the suitability of PVC-CSF signal as an estimate of pure CSF was investigated by comparing its time course with the long-TE CSF signal. Results from both simulation and in vivo data indicated that including the CSF signal in PVC improves quantification of GM CBF by approximately 10%. In simulated data, this improvement was greater for multi-PLD (model fitting) quantification than for single PLD (~1-5% difference). In the choroid plexus, the difference between CSF-PVC and non-CSF-PVC was much larger, averaging around 30%. Long-TE (pure) CSF signal could not be estimated from PVC CSF signal as it followed a different time course, indicating the presence of residual macrovascular signal in the PVC. The inclusion of CSF adds value to PVC for more accurate measurements of GM perfusion, and especially for quantification of perfusion in the choroid plexus and study of the glymphatic system.


Assuntos
Encéfalo , Circulação Cerebrovascular , Encéfalo/fisiologia , Marcadores de Spin , Circulação Cerebrovascular/fisiologia , Substância Cinzenta/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos
7.
Mult Scler ; 29(11-12): 1373-1382, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700482

RESUMO

BACKGROUND: Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pro-inflammatory cytokine secreted by various immune cells. Several studies have demonstrated an expansion of GM-CSF producing T cells in the blood or CSF of people with MS (pwMS). However, whether this equates to greater concentrations of circulating cytokine remains unknown as quantification is difficult with traditional assays. OBJECTIVE: To determine whether GM-CSF can be quantified and whether GM-CSF levels are elevated in pwMS. METHODS: We employed Single Molecule Array (Simoa) to measure GM-CSF in both CSF and blood. We then investigated relationships between GM-CSF levels and measures of blood-CSF-barrier integrity. RESULTS: GM-CSF was quantifiable in all samples and was significantly higher in the CSF of pwMS compared with controls. No association was found between CSF GM-CSF levels and Q-Albumin - a measure of blood-CSF-barrier integrity. CSF GM-CSF correlated with measures of intrathecal inflammation, and these relationships were greater in primary progressive MS compared with relapsing-remitting MS. CONCLUSION: GM-CSF levels are elevated specifically in the CSF of pwMS. Our results suggest that elevated cytokine levels may reflect (at least partial) intrathecal production, as opposed to simple diffusion across a dysfunctional blood-CSF-barrier.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Esclerose Múltipla , Humanos , Citocinas , Inflamação , Albuminas
8.
Pharm Res ; 40(11): 2667-2675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37704894

RESUMO

PURPOSE: The brain is protected from circulating metabolites and xenobiotics by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Previous studies report that P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) are expressed apically or subapically at the blood-CSF barrier (BCSFB), implying a paradoxical function to mediate blood-to-CSF transport of xenobiotics. As evidence of P-gp and Bcrp activity at the BCSFB is limited, the goal of this study is to investigate functional activity of P-gp and Bcrp at the murine BCSFB using a live tissue imaging approach. METHODS: The choroid plexuses (CP) forming the BCSFB were freshly isolated from mouse brain ventricles and incubated with fluorescent probes calcein-AM and BODIPY FL-Prazosin. Using quantitative fluorescence microscopy, the functional contributions of Bcrp and P-gp were examined using inhibitors and mice with targeted deletion of the Abcb1a/b or Abcg2 gene. RESULTS: Apical transport of calcein-AM in choroid plexus epithelial (CPE) cells is sensitive to inhibition by elacridar and Ko143 but is unaffected by P-gp deletion. In wild-type mice, elacridar increased CPE accumulation of BODIPY FL-Prazosin by 220% whereas deletion of Bcrp increased BODIPY FL-Prazosin accumulation by 43%. There was no change in Mdr1a/1b mRNA expression in CP tissues from the Bcrp-/- mice. CONCLUSIONS: This study demonstrated functional activity of Bcrp at the BCSFB apical membrane and provided evidence supporting an additional contribution by P-gp. These findings contribute to the understanding of transport mechanisms that regulate CSF drug concentrations, which may benefit future predictions of CNS drug disposition, efficacy, and toxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Animais , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteínas de Neoplasias/metabolismo , Prazosina
9.
Am J Physiol Cell Physiol ; 323(1): C1-C13, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35508188

RESUMO

The choroid plexus epithelium (CPe) forms a barrier between the cerebral blood supply and the cerebrospinal fluid (CSF), establishing the blood-CSF barrier (BCSFB). CSF is actively secreted by the CPe via tightly controlled processes involving multiple channels, transporters, and pumps. The importance of controlling CSF production and composition has been accentuated recently with an appreciation of CSF dysfunction in many pathologies. For mechanistic studies of CSF production, isolated CPe cell lines are valuable for the testing of hypotheses and potential drug targets. Although several continuous CPe cell lines have been described, none appear to have all the characteristics of the native epithelium and each must be used judiciously. The porcine choroid plexus-Riems (PCP-R) cell line forms a high-resistance monolayer characteristic of a barrier epithelium. Conservation of this phenotype is unusual among CPe cell lines, making this model useful for studies of the effects of infection, injury, and drugs on permeability. We have recently discovered that, although this line expresses many of the transporters expressed in the native tissue, some are mispolarized. As a result, inferences regarding fluid/electrolyte flux and the resultant CSF production should be pursued with caution. Furthermore, extended culture periods and changes in media composition result in significant morphological and functional variability. These studies provide a more detailed characterization of the PCP-R cell line concerning transporter expression, polarization, and functionality, as well as plasticity in culture, with the goal to provide the scientific community with information necessary to optimize future experiments with this model.


Assuntos
Proteínas de Transporte , Plexo Corióideo , Animais , Barreira Hematoencefálica/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Epitélio/metabolismo , Suínos
10.
J Neuroinflammation ; 19(1): 174, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794632

RESUMO

The cerebrospinal fluid (CSF) space is convoluted. CSF flow oscillates with a net flow from the ventricles towards the cerebral and spinal subarachnoid space. This flow is influenced by heartbeats, breath, head or body movements as well as the activity of the ciliated epithelium of the plexus and ventricular ependyma. The shape of the CSF space and the CSF flow preclude rapid equilibration of cells, proteins and smaller compounds between the different parts of the compartment. In this review including reinterpretation of previously published data we illustrate, how anatomical and (patho)physiological conditions can influence routine CSF analysis. Equilibration of the components of the CSF depends on the size of the molecule or particle, e.g., lactate is distributed in the CSF more homogeneously than proteins or cells. The concentrations of blood-derived compounds usually increase from the ventricles to the lumbar CSF space, whereas the concentrations of brain-derived compounds usually decrease. Under special conditions, in particular when distribution is impaired, the rostro-caudal gradient of blood-derived compounds can be reversed. In the last century, several researchers attempted to define typical CSF findings for the diagnosis of several inflammatory diseases based on routine parameters. Because of the high spatial and temporal variations, findings considered typical of certain CNS diseases often are absent in parts of or even in the entire CSF compartment. In CNS infections, identification of the pathogen by culture, antigen detection or molecular methods is essential for diagnosis.


Assuntos
Infecções do Sistema Nervoso Central , Encéfalo/fisiologia , Infecções do Sistema Nervoso Central/líquido cefalorraquidiano , Ventrículos Cerebrais , Epêndima , Humanos , Medula Espinal
11.
J Neuroinflammation ; 19(1): 17, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027063

RESUMO

BACKGROUND: Toxoplasma gondii (T. gondii) is a highly successful parasite being able to cross all biological barriers of the body, finally reaching the central nervous system (CNS). Previous studies have highlighted the critical involvement of the blood-brain barrier (BBB) during T. gondii invasion and development of subsequent neuroinflammation. Still, the potential contribution of the choroid plexus (CP), the main structure forming the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have not been addressed. METHODS: To investigate T. gondii invasion at the onset of neuroinflammation, the CP and brain microvessels (BMV) were isolated and analyzed for parasite burden. Additionally, immuno-stained brain sections and three-dimensional whole mount preparations were evaluated for parasite localization and morphological alterations. Activation of choroidal and brain endothelial cells were characterized by flow cytometry. To evaluate the impact of early immune responses on CP and BMV, expression levels of inflammatory mediators, tight junctions (TJ) and matrix metalloproteinases (MMPs) were quantified. Additionally, FITC-dextran was applied to determine infection-related changes in BCSFB permeability. Finally, the response of primary CP epithelial cells to T. gondii parasites was tested in vitro. RESULTS: Here we revealed that endothelial cells in the CP are initially infected by T. gondii, and become activated prior to BBB endothelial cells indicated by MHCII upregulation. Additionally, CP elicited early local immune response with upregulation of IFN-γ, TNF, IL-6, host-defence factors as well as swift expression of CXCL9 chemokine, when compared to the BMV. Consequently, we uncovered distinct TJ disturbances of claudins, associated with upregulation of MMP-8 and MMP-13 expression in infected CP in vivo, which was confirmed by in vitro infection of primary CP epithelial cells. Notably, we detected early barrier damage and functional loss by increased BCSFB permeability to FITC-dextran in vivo, which was extended over the infection course. CONCLUSIONS: Altogether, our data reveal a close interaction between T. gondii infection at the CP and the impairment of the BCSFB function indicating that infection-related neuroinflammation is initiated in the CP.


Assuntos
Plexo Corióideo , Toxoplasmose Cerebral , Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Células Endoteliais , Humanos , Imunidade , Toxoplasmose Cerebral/metabolismo
12.
J Neuroinflammation ; 19(1): 19, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057809

RESUMO

BACKGROUND: Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far. OBJECTIVE: To analyze systematically the CSF profile in COVID-19. METHODS: Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers RESULTS: The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72-50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3-240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF L-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2-4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [N = 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease. CONCLUSIONS: The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and 'long COVID'. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.


Assuntos
COVID-19/líquido cefalorraquidiano , Adulto , Barreira Hematoencefálica , COVID-19/complicações , Proteínas do Líquido Cefalorraquidiano/líquido cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Europa (Continente) , Feminino , Humanos , Imunidade Celular , Imunoglobulina G/líquido cefalorraquidiano , Ácido Láctico/líquido cefalorraquidiano , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Doenças do Sistema Nervoso/etiologia , Bandas Oligoclonais/líquido cefalorraquidiano , Estudos Retrospectivos , Punção Espinal , Síndrome de COVID-19 Pós-Aguda
13.
Neuropathol Appl Neurobiol ; 48(4): e12789, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34935179

RESUMO

The brain is protected by the endothelial blood-brain barrier (BBB) that limits the access of micro-organisms, tumour cells, immune cells and autoantibodies to the parenchyma. However, the classic model of disease spread across a disrupted BBB does not explain the focal distribution of lesions seen in a variety of neurological diseases and why lesions are frequently adjacent to the cerebrospinal fluid (CSF) spaces. We have critically reviewed the possible role of a blood-CSF-brain route as a disease entry pathway into the brain parenchyma. The initial step of this pathway is the transfer of pathogens or immune components from the blood into the CSF at the choroid plexuses, where the blood-CSF barrier (BCSFB) is located. The flow of CSF results in disease dissemination throughout the CSF spaces. Access to the brain parenchyma from the CSF can then occur across the ependymal layer at the ventricular surface or across the pial-glial barrier of the subarachnoid space and the Virchow-Robin spaces. We have reviewed the anatomy and physiology of the blood-CSF-brain pathway and the brain barriers controlling this process. We then summarised the evidence supporting this brain entry route in a cross-section of neurological diseases including neuromyelitis optica, multiple sclerosis, neurosarcoidosis, neuropsychiatric lupus, cryptococcal infection and both solid and haematological tumours. This summary highlights the conditions that share the blood-CSF-brain pathway as a pathogenetic mechanism. These include the characteristic proximity of lesions to CSF, evidence of disruption of the brain barriers and the identification of significant pathology within the CSF. An improved understanding of pathological transfer through the CSF and across all brain barriers will inform on more effective and targeted treatments of primary and secondary diseases of the central nervous system.


Assuntos
Barreira Hematoencefálica , Encéfalo , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Sistema Nervoso Central , Plexo Corióideo
14.
Pharm Res ; 39(7): 1469-1480, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411508

RESUMO

PURPOSE: Transporters at the blood-cerebrospinal fluid (CSF) barrier (BCSFB) play active roles in removing drugs and toxins from the CSF. The goal of this study is to develop a fluorescence microscopy approach to quantitatively study the transepithelial transport processes at the murine BCSFB in real time. METHODS: Choroid plexus (CP) tissues were isolated from mouse lateral ventricles and incubated with anionic (fluorescein-methotrexate, 8-fluorescein-cAMP) or cationic (IDT307) fluorescent probes. The CSF-to-blood transport was imaged and quantified using compartmental segmentation and digital image analysis. Real time images were captured and analyzed to obtain kinetic information and identify the rate-limiting step. The effect of transporter inhibitors was also evaluated. RESULTS: The transport processes of fluorescent probes can be captured and analyzed digitally. The intra- and inter- animal variability were 20.4% and 25.7%, respectively. Real time analysis showed distinct transport kinetics and rate-limiting step for anionic and cationic probes. A CP efflux index was proposed to distinguish between transepithelial flux and intracellular accumulation. Rifampin and MK571 decreased the overall transepithelial transport of anionic probes by more than 90%, indicating a possible involvement of organic anion transporting polypeptides (Oatps) and multidrug resistance-associated proteins (Mrps). CONCLUSIONS: A CP isolation method was described, and a quantitative fluorescence imaging approach was developed to evaluate CSF-to-blood transport in mouse CP. The method is consistent, reproducible, and capable of tracking real time transepithelial transport with temporal and spatial resolution. The approach can be used to evaluate transport mechanisms, assess tissue drug accumulation, and assay potential drug-drug interactions at the BCSFB.


Assuntos
Barreira Hematoencefálica , Corantes Fluorescentes , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Corantes Fluorescentes/metabolismo , Camundongos , Microscopia de Fluorescência
15.
Neuroimage ; 245: 118755, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34826596

RESUMO

The study of brain clearance mechanisms is an active area of research. While we know that the cerebrospinal fluid (CSF) plays a central role in one of the main existing clearance pathways, the exact processes for the secretion of CSF and the removal of waste products from tissue are under debate. CSF is thought to be created by the exchange of water and ions from the blood, which is believed to mainly occur in the choroid plexus. This exchange has not been thoroughly studied in vivo. We propose a modified arterial spin labeling (ASL) MRI sequence and image analysis to track blood water as it is transported to the CSF, and to characterize its exchange from blood to CSF. We acquired six pseudo-continuous ASL sequences with varying labeling duration (LD) and post-labeling delay (PLD) and a segmented 3D-GRASE readout with a long echo train (8 echo times (TE)) which allowed separation of the very long-T2 CSF signal. ASL signal was observed at long TEs (793 ms and higher), indicating presence of labeled water transported from blood to CSF. This signal appeared both in the CSF proximal to the choroid plexus and in the subarachnoid space surrounding the cortex. ASL signal was separated into its blood, gray matter and CSF components by fitting a triexponential function with T2s taken from literature. A two-compartment dynamic model was introduced to describe the exchange of water through time and TE. From this, a water exchange time from the blood to the CSF (Tbl->CSF) was mapped, with an order of magnitude of approximately 60 s.


Assuntos
Água Corporal/metabolismo , Líquido Cefalorraquidiano/metabolismo , Circulação Cerebrovascular/fisiologia , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Marcadores de Spin , Espaço Subaracnóideo/diagnóstico por imagem , Espaço Subaracnóideo/metabolismo
16.
J Clin Microbiol ; 59(9): e0025521, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34132584

RESUMO

Recent studies have shown elevated levels of the B-cell chemokine (C-X-C motif) ligand 13 (CXCL13) in the cerebrospinal fluid (CSF) of patients with early Lyme neuroborreliosis (LNB). In this retrospective study, we evaluated the diagnostic performance of the Quantikine CXCL13 enzyme-linked immunosorbent assay (ELISA) (R&D Systems, Inc., MN, USA) and the recomBead CXCL13 assay (Mikrogen, Neuried, Germany) for the detection of CXCL13 in CSF. All consecutive patients from whom a CSF and a serum sample had been collected between August 2013 and June 2016 were eligible for inclusion. Patients suspected of LNB were classified as definite, possible, or non-LNB according to the guidelines of the European Federation of Neurological Societies (EFNS). Due to the limited number of LNB patients in the predefined study period, additional LNB patients were included from outside this period. In total, 156 patients (150 consecutive patients and 6 additional LNB patients) were included. Seven (4.5%) were classified as definite, eight (5.1%) as possible, and 141 (90.4%) as non-LNB patients. Receiver operating characteristic (ROC) curve analysis comparing definite-LNB patients with non-LNB patients showed a cutoff value of 85.9 pg/ml for the Quantikine CXCL13 ELISA and 252.2 pg/ml for the recomBead CXCL13 assay. The corresponding sensitivity was 100% (95% confidence interval [CI], 100% to 100%) for both, and the corresponding specificities were 98.6% (95% CI, 96.5% to 100%) for the CXCL13 ELISA and 97.2% (95% CI, 93.6% to 100%) for the recomBead CXCL13 assay. This study showed that CXCL13 in CSF can be of additional value for the diagnosis of LNB.


Assuntos
Neuroborreliose de Lyme , Quimiocina CXCL13 , Ensaio de Imunoadsorção Enzimática , Humanos , Testes Imunológicos , Neuroborreliose de Lyme/diagnóstico , Curva ROC , Estudos Retrospectivos
17.
Neuropathol Appl Neurobiol ; 46(5): 431-440, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31872472

RESUMO

AIMS: We investigated the potential of apolipoprotein D (apoD) as cerebrospinal fluid (CSF) biomarker for cerebral amyloid angiopathy (CAA) after confirmation of its association with CAA pathology in human brain tissue. METHODS: The association of apoD with CAA pathology was analysed in human occipital lobe tissue of CAA (n = 9), Alzheimer's disease (AD) (n = 11) and healthy control cases (n = 11). ApoD levels were quantified in an age- and sex-matched CSF cohort of CAA patients (n = 31), AD patients (n = 27) and non-neurological controls (n = 67). The effects of confounding factors (age, sex, serum levels) on apoD levels were studied using CSF of non-neurological controls (age range 16-85 years), and paired CSF and serum samples. RESULTS: ApoD was strongly associated with amyloid deposits in vessels, but not with parenchymal plaques in human brain tissue. CSF apoD levels correlated with age and were higher in men than women in subjects >50 years. The apoD CSF/serum ratio correlated with the albumin ratio. When controlling for confounding factors, CSF apoD levels were significantly lower in CAA patients compared with controls and compared with AD patients (P = 0.0008). CONCLUSIONS: Our data show that apoD is specifically associated with CAA pathology and may be a CSF biomarker for CAA, but clinical application is complicated due to dependency on age, sex and blood-CSF barrier integrity. Well-controlled follow-up studies are required to determine whether apoD can be used as reliable biomarker for CAA.


Assuntos
Apolipoproteínas D/metabolismo , Biomarcadores/líquido cefalorraquidiano , Angiopatia Amiloide Cerebral/patologia , Idoso , Angiopatia Amiloide Cerebral/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Epilepsy Behav ; 102: 106682, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846897

RESUMO

PURPOSE: Investigating immune cells in autoimmune limbic encephalitis (LE) will contribute to our understanding of its pathophysiology and may help to develop appropriate therapies. The aim of the present study was to analyze immune cells to reveal underlying immune signatures in patients with temporal lobe epilepsy (TLE) with LE. METHODS: We investigated 68 patients with TLE with LE compared with 7 control patients with TLE with no signs of LE screened from 154 patients with suspected LE. From the patients with TLE-LE, we differentiated early seizure onset (<20 years, n = 9) and late seizure onset group (≥20 years, n = 59) of patients. Patients underwent neuropsychological assessment, electroencephalography (EEG), brain magnetic resonance imaging (MRI), and peripheral blood (PB) and cerebrospinal fluid (CSF) analysis including flow cytometry. RESULTS: We identified a higher CD4/8+ T-cell ratio in the PB in all patients with TLE-LE and in patients with late-onset TLE-LE each compared with controls (Kruskal-Wallis one-way ANOVA (analysis of variance) with Dunn's test, p < 0.05). Moreover, a lower CD4/CD8+ T-cell ratio is detected in all patients with TLE-LE with blood-CSF barrier dysfunction, unlike in those with none (Kruskal-Wallis one-way ANOVA with Dunn's test, p < 0.05). CONCLUSIONS: These findings suggest that the proportion of CD4+ and CD8+ T-cells in the CSF of patients with LE associated with blood-CSF barrier dysfunction plays a potential role in CNS (central nervous system) inflammation in these patients. Thus, flow cytometry as a methodology reveals novel insights into LE's genesis and symptomatology. The CD4/8+ T-cell ratio in PB as a biomarker for LE requires further investigation.


Assuntos
Doenças Autoimunes/líquido cefalorraquidiano , Doenças Autoimunes/diagnóstico por imagem , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Epilepsia do Lobo Temporal/líquido cefalorraquidiano , Epilepsia do Lobo Temporal/diagnóstico por imagem , Encefalite Límbica/líquido cefalorraquidiano , Encefalite Límbica/diagnóstico por imagem , Adulto , Doenças Autoimunes/fisiopatologia , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/fisiopatologia , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Humanos , Encefalite Límbica/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
19.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233688

RESUMO

The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood-brain barrier separating the blood from the brain parenchyma and the blood-cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.


Assuntos
Barreira Hematoencefálica , Interações Hospedeiro-Patógeno , Meningite Meningocócica/microbiologia , Neisseria meningitidis/fisiologia , Transdução de Sinais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/microbiologia , Humanos , Meninges/metabolismo , Meninges/microbiologia
20.
J Pharmacokinet Pharmacodyn ; 46(4): 319-338, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31115858

RESUMO

In this manuscript, we have presented the development of a novel platform physiologically-based pharmacokinetic (PBPK) model to characterize brain disposition of mAbs in the mouse, rat, monkey and human. The model accounts for known anatomy and physiology of the brain, including the presence of distinct blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier. CSF and interstitial fluid turnover, and FcRn mediated transport of mAbs are accounted for. The model was first used to characterize published and in-house pharmacokinetic (PK) data on the disposition of mAbs in rat brain, including the data on PK of mAb in different regions of brain determined using microdialysis. Majority of model parameters were fixed based on literature reported values, and only 3 parameters were estimated using rat data. The rat PBPK model was translated to mouse, monkey, and human, simply by changing the values of physiological parameters corresponding to each species. The translated PBPK models were validated by a priori predicting brain PK of mAbs in all three species, and comparing predicted exposures with observed data. The platform PBPK model was able to a priori predict all the validation PK profiles reasonably well (within threefold), without estimating any parameters. As such, the platform PBPK model presented here provides an unprecedented quantitative tool for prediction of mAb PK at the site-of-action in the brain, and preclinical-to-clinical translation of mAbs being developed against central nervous system (CNS) disorders. The proposed model can be further expanded to account for target engagement, disease pathophysiology, and novel mechanisms, to support discovery and development of novel CNS targeting mAbs.


Assuntos
Anticorpos Monoclonais/farmacocinética , Encéfalo/metabolismo , Modelos Biológicos , Pesquisa Translacional Biomédica/métodos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/líquido cefalorraquidiano , Haplorrinos , Humanos , Camundongos , Especificidade de Órgãos , Ratos , Especificidade da Espécie , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA