Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.134
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 44: 359-381, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33823654

RESUMO

Oxytocin regulates parturition, lactation, parental nurturing, and many other social behaviors in both sexes. The circuit mechanisms by which oxytocin modulates social behavior are receiving increasing attention. Here, we review recent studies on oxytocin modulation of neural circuit function and social behavior, largely enabled by new methods of monitoring and manipulating oxytocin or oxytocin receptor neurons in vivo. These studies indicate that oxytocin can enhance the salience of social stimuli and increase signal-to-noise ratios by modulating spiking and synaptic plasticity in the context of circuits and networks. We highlight oxytocin effects on social behavior in nontraditional organisms such as prairie voles and discuss opportunities to enhance the utility of these organisms for studying circuit-level modulation of social behaviors. We then discuss recent insights into oxytocin neuron activity during social interactions. We conclude by discussing some of the major questions and opportunities in the field ahead.


Assuntos
Ocitocina , Comportamento Social , Animais , Arvicolinae , Feminino , Masculino , Plasticidade Neuronal , Receptores de Ocitocina
2.
Proc Natl Acad Sci U S A ; 121(23): e2403726121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805293

RESUMO

The key of heterostructure is the combinations created by stacking various vdW materials, which can modify interlayer coupling and electronic properties, providing exciting opportunities for designer devices. However, this simple stacking does not create chemical bonds, making it difficult to fundamentally alter the electronic structure. Here, we demonstrate that interlayer interactions in heterostructures can be fundamentally controlled using hydrostatic pressure, providing a bonding method to modify electronic structures. By covering graphene with boron nitride and inducing an irreversible phase transition, the conditions for graphene lattice-matching bonding (IMB) were created. We demonstrate that the increased bandgap of graphene under pressure is well maintained in ambient due to the IMB in the interface. Comparison to theoretical modeling emphasizes the process of pressure-induced interfacial bonding, systematically generalizes, and predicts this model. Our results demonstrate that pressure can irreversibly control interlayer bonding, providing opportunities for high-pressure technology in ambient applications and IMB engineering in heterostructures.

3.
Proc Natl Acad Sci U S A ; 121(14): e2316101121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547068

RESUMO

Though YB6 and LaB6 share the same crystal structure, atomic valence electron configuration, and phonon modes, they exhibit drastically different phonon-mediated superconductivity. YB6 superconducts below 8.4 K, giving it the second-highest critical temperature of known borides, second only to MgB2. LaB6 does not superconduct until near-absolute zero temperatures (below 0.45 K), however. Though previous studies have quantified the canonical superconductivity descriptors of YB6's greater Fermi-level (Ef) density of states and higher electron-phonon coupling (EPC), the root of this difference has not been assessed with full detail of the electronic structure. Through chemical bonding, we determine low-lying, unoccupied 4f atomic orbitals in lanthanum to be the key difference between these superconductors. These orbitals, which are not accessible in YB6, hybridize with π B-B bonds and bring this π-system lower in energy than the σ B-B bonds otherwise at Ef. This inversion of bands is crucial: the optical phonon modes we show responsible for superconductivity cause the σ-orbitals of YB6 to change drastically in overlap, but couple weakly to the π-orbitals of LaB6. These phonons in YB6 even access a crossing of electronic states, indicating strong EPC. No such crossing in LaB6 is observed. Finally, a supercell (the M k-point) is shown to undergo Peierls-like effects in YB6, introducing additional EPC from both softened acoustic phonons and the same electron-coupled optical modes as in the unit cell. Overall, we find that LaB6 and YB6 have fundamentally different mechanisms of superconductivity, despite their otherwise near-identity.

4.
Proc Natl Acad Sci U S A ; 121(2): e2316498121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170754

RESUMO

Glasses are commonly described as disordered counterparts of the corresponding crystals; both usually share the same short-range order, but glasses lack long-range order. Here, a quantification of chemical bonding in a series of glasses and their corresponding crystals is performed, employing two quantum-chemical bonding descriptors, the number of electrons transferred and shared between adjacent atoms. For popular glasses like SiO2, GeSe2, and GeSe, the quantum-chemical bonding descriptors of the glass and the corresponding crystal hardly differ. This explains why these glasses possess a similar short-range order as their crystals. Unconventional glasses, which differ significantly in their short-range order and optical properties from the corresponding crystals are only found in a distinct region of the map spanned by the two bonding descriptors. This region contains crystals of GeTe, Sb2Te3, and GeSb2Te4, which employ metavalent bonding. Hence, unconventional glasses are only obtained for solids, whose crystals employ theses peculiar bonds.

5.
Proc Natl Acad Sci U S A ; 121(6): e2315866121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294934

RESUMO

Among the long-standing efforts to elucidate the physical mechanisms of protein-ligand catch bonding, particular attention has been directed at the family of selectin proteins. Selectins exhibit slip, catch-slip, and slip-catch-slip bonding, with minor structural modifications causing major changes in selectins' response to force. How can a single structural mechanism allow interconversion between these various behaviors? We present a unifying theory of selectin-ligand catch bonding, using a structurally motivated free energy landscape to show how the topology of force-induced deformations of the molecular system produces the full range of observed behaviors. We find that the pathway of bond rupture deforms in non-trivial ways, such that unbinding dynamics depend sensitively on force. This implies a severe breakdown of Bell's theory-a paradigmatic theory used widely in catch bond modeling-raising questions about the suitability of Bell's theory in modeling other catch bonds. Our approach can be applied broadly to other protein-ligand systems.


Assuntos
Proteínas , Selectinas , Ligantes , Selectinas/química , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 120(8): e2218405120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787368

RESUMO

Most metals adopt simple structures such as body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) structures in specific groupings across the periodic table, and many undergo transitions to surprisingly complex structures on compression, not expected from conventional free-electron-based theories of metals. First-principles calculations have been able to reproduce many observed structures and transitions, but a unified, predictive theory that underlies this behavior is not yet in hand. Discovered by analyzing the electronic properties of metals in various lattices over a broad range of sizes and geometries, a remarkably simple theory shows that the stability of metal structures is governed by electrons occupying local interstitial orbitals and their strong chemical interactions. The theory provides a basis for understanding and predicting structures in solid compounds and alloys over a broad range of conditions.

7.
Proc Natl Acad Sci U S A ; 120(9): e2214970120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802430

RESUMO

Most biomolecular activity takes place in aqueous environments, and it is strongly influenced by the surrounding water molecules. The hydrogen bond networks that these water molecules form are likewise influenced by their interactions with the solutes, and thus, it is crucial to understand this reciprocal process. Glycoaldehyde (Gly), often considered the smallest sugar, represents a good template to explore the steps of solvation and determine how the organic molecule shapes the structure and hydrogen bond network of the solvating water cluster. Here, we report a broadband rotational spectroscopy study on the stepwise hydration of Gly with up to six water molecules. We reveal the preferred hydrogen bond networks formed when water molecules start to form three-dimensional (3D) topologies around an organic molecule. We observe that water self-aggregation prevails even in these early stages of microsolvation. These hydrogen bond networks manifest themselves through the insertion of the small sugar monomer in the pure water cluster in a way in which the oxygen atom framework and hydrogen bond network resemble those of the smallest three-dimensional pure water clusters. Of particular interest is the identification, in both the pentahydrate and hexahydrate, of the previously observed prismatic pure water heptamer motif. Our results show that some specific hydrogen bond networks are preferred and survive the solvation of a small organic molecule, mimicking those of pure water clusters. A many-body decomposition analysis of the interaction energy is also performed to rationalize the strength of a particular hydrogen bond, and it successfully confirms the experimental findings.

8.
Proc Natl Acad Sci U S A ; 120(52): e2314998120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127983

RESUMO

We report the hydrogen-bonding dynamics of water to a nitrile-functionalized and plasmonic electrode surface as a function of applied voltage. The surface-enhanced two-dimensional infrared spectra exhibit hydrogen-bonded and non-hydrogen-bonded nitrile features in similar proportions, plus cross peaks between the two. Isotopic dilution experiments show that the cross peaks arise predominantly from chemical exchange between hydrogen-bonded and non-hydrogen-bonded nitriles. The chemical exchange rate depends upon voltage, with the hydrogen bond of the water to the nitriles breaking 2 to 3 times slower (>63 vs. 25 ps) under a positive as compared to a negative potential. Spectral diffusion created by hydrogen-bond fluctuations occurs on a ~1 ps timescale and is moderately potential-dependent. Timescales from molecular dynamics simulations agree qualitatively with the experiment and show that a negative voltage causes a small net displacement of water away from the surface. These results show that the voltage applied to an electrode can alter the timescales of solvent motion at its interface, which has implications for electrochemically driven reactions.

9.
Proc Natl Acad Sci U S A ; 120(41): e2311416120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782781

RESUMO

An evolutionarily conserved region of the TDP-43 low-complexity domain (LCD) twenty residues in length can adopt either an α-helical or ß-strand conformation. When in the latter conformation, TDP-43 self-associates via the formation of a labile, cross-ß structure. Self-association can be monitored via the formation of phase-separated protein droplets. Exposure of droplets to hydrogen peroxide leads to oxidation of conserved methionine residues distributed throughout the LCD. Oxidation disassembles the cross-ß structure, thus eliminating both self-association and phase separation. Here, we demonstrate that this process reciprocally enables formation of α-helical structure in precisely the same region formerly functioning to facilitate ß-strand-mediated self-association. We further observe that the α-helical conformation allows interaction with a lipid-like detergent and that exposure to lipids enhances the ß-to-α conformational switch. We hypothesize that regulation of this oxidative switch will prove to be important to the control of localized translation within vertebrate cells. The experimental observations reported herein were heavily reliant on studies of 1,6-hexanediol, a chemical agent that selectively dissolves labile structures formed via the self-association of protein domains of low sequence complexity. This aliphatic alcohol is shown to exert its dissociative activity primarily via hydrogen-bonding interactions with carbonyl oxygen atoms of the polypeptide backbone. Such observations underscore the central importance of backbone-mediated protein:protein interactions that facilitate the self-association and phase separation of LCDs.


Assuntos
Proteínas de Ligação a DNA , Peptídeos , Proteínas de Ligação a DNA/metabolismo , Peptídeos/química , Domínios Proteicos , Metionina/metabolismo , Estresse Oxidativo
10.
J Biol Chem ; 300(2): 105606, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159862

RESUMO

Previous cryo-electron micrographs suggested that the skeletal muscle Ca2+ release channel, ryanodine receptor (RyR)1, is regulated by intricate interactions between the EF hand Ca2+ binding domain and the cytosolic loop (S2-S3 loop). However, the precise molecular details of these interactions and functional consequences of the interactions remain elusive. Here, we used molecular dynamics simulations to explore the specific amino acid pairs involved in hydrogen bond interactions within the EF hand-S2-S3 loop interface. Our simulations unveiled two key interactions: (1) K4101 (EF hand) with D4730 (S2-S3 loop) and (2) E4075, Q4078, and D4079 (EF hand) with R4736 (S2-S3 loop). To probe the functional significance of these interactions, we constructed mutant RyR1 complementary DNAs and expressed them in HEK293 cells for [3H]ryanodine binding assays. Our results demonstrated that mutations in the EF hand, specifically K4101E and K4101M, resulted in reduced affinities for Ca2+/Mg2+-dependent inhibitions. Interestingly, the K4101E mutation increased the affinity for Ca2+-dependent activation. Conversely, mutations in the S2-S3 loop, D4730K and D4730N, did not significantly change the affinities for Ca2+/Mg2+-dependent inhibitions. Our previous finding that skeletal disease-associated RyR1 mutations, R4736Q and R4736W, impaired Ca2+-dependent inhibition, is consistent with the current results. In silico mutagenesis analysis aligned with our functional data, indicating altered hydrogen bonding patterns upon mutations. Taken together, our findings emphasize the critical role of the EF hand-S2-S3 loop interaction in Ca2+/Mg2+-dependent inhibition of RyR1 and provide insights into potential therapeutic strategies targeting this domain interaction for the treatment of skeletal myopathies.


Assuntos
Motivos EF Hand , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Cálcio/metabolismo , Células HEK293 , Músculo Esquelético/metabolismo , Mutação , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
J Biol Chem ; 300(4): 105777, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395308

RESUMO

3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.


Assuntos
Domínio Catalítico , Dioxigenases , Modelos Moleculares , Ácido 3-Mercaptopropiônico/química , Catálise , Dioxigenases/química , Dioxigenases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Estrutura Terciária de Proteína
12.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916488

RESUMO

Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.


Assuntos
Encéfalo , Tentilhões , Redes Reguladoras de Genes , Comportamento de Nidação , Animais , Tentilhões/genética , Tentilhões/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Feminino , Masculino , Comportamento Social , Transcriptoma
13.
EMBO J ; 40(5): e104267, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491217

RESUMO

Impairments in social relationships and awareness are features observed in autism spectrum disorders (ASDs). However, the underlying mechanisms remain poorly understood. Shank2 is a high-confidence ASD candidate gene and localizes primarily to postsynaptic densities (PSDs) of excitatory synapses in the central nervous system (CNS). We show here that loss of Shank2 in mice leads to a lack of social attachment and bonding behavior towards pubs independent of hormonal, cognitive, or sensitive deficits. Shank2-/- mice display functional changes in nuclei of the social attachment circuit that were most prominent in the medial preoptic area (MPOA) of the hypothalamus. Selective enhancement of MPOA activity by DREADD technology re-established social bonding behavior in Shank2-/- mice, providing evidence that the identified circuit might be crucial for explaining how social deficits in ASD can arise.


Assuntos
Transtorno Autístico/tratamento farmacológico , Modelos Animais de Doenças , Relações Interpessoais , Comportamento Materno/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Piperazinas/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Animais , Transtorno Autístico/etiologia , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Área Pré-Óptica/metabolismo , Área Pré-Óptica/patologia , Sinapses
14.
Proc Natl Acad Sci U S A ; 119(39): e2212224119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122229

RESUMO

Previous studies showed that baby monkeys separated from their mothers develop strong and lasting attachments to inanimate surrogate mothers, but only if the surrogate has a soft texture; soft texture is more important for the infant's attachment than is the provision of milk. Here I report that postpartum female monkeys also form strong and persistent attachments to inanimate surrogate infants, that the template for triggering maternal attachment is also tactile, and that even a brief period of attachment formation can dominate visual and auditory cues indicating a more appropriate target.


Assuntos
Amor , Mães , Animais , Feminino , Haplorrinos , Humanos , Apego ao Objeto , Gravidez , Mães Substitutas
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042813

RESUMO

Entropy alone can self-assemble hard nanoparticles into colloidal crystals of remarkable complexity whose structures are the same as atomic and molecular crystals, but with larger lattice spacings. Molecular simulation is a powerful tool used extensively to study the self-assembly of ordered phases from disordered fluid phases of atoms, molecules, or nanoparticles. However, it is not yet possible to predict colloidal crystal structures a priori from particle shape as we can for atomic crystals from electronic valency. Here, we present such a first-principles theory. By calculating and minimizing excluded volume within the framework of statistical mechanics, we describe the directional entropic forces that collectively emerge between hard shapes, in familiar terms used to describe chemical bonds. We validate our theory by demonstrating that it predicts thermodynamically preferred structures for four families of hard polyhedra that match, in every instance, previous simulation results. The success of this first-principles approach to entropic colloidal crystal structure prediction furthers fundamental understanding of both entropically driven crystallization and conceptual pictures of bonding in matter.

16.
Proc Natl Acad Sci U S A ; 119(45): e2206925119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322750

RESUMO

Romantic first impressions seem to linger, but why? Few studies have investigated how romantic desire during initial interactions predicts later relational outcomes (e.g., later romantic interest, contact attempts) using a design that can tease apart different possible mechanisms (e.g., mate value, selectivity, compatibility). Across three speed-dating studies (n = 559) with longitudinal follow-ups (including college and community samples, and a sample of men who date men), we investigated whether different components of initial romantic impressions predicted later romantic outcomes and relationship initiation. Using the social relations model, we partitioned initial desire at speed dating (determined from 6,600+ total dates) into partner effects (a date's consensual desirability, e.g., mate value), actor effects (a participant's general desirousness, e.g., selectivity), and relationship effects (a participant's unique liking for a date over and beyond partner and actor effects, e.g., compatibility) to predict later evaluations (romantic interest, physical attraction, and desire to know better) and behaviors (direct messaging and going on dates). Meta-analyses across the three studies showed that, across 6,100+ follow-up reports, partner and relationship effects were especially strong predictors of relationship initiation variables. Consistent with evolutionary models of human pair bonding, these findings suggest that both consensually desirable traits and unique impressions of compatibility have lingering effects on relationship development, even from the moment that two potential partners meet.


Assuntos
Relações Interpessoais , Comportamento Sexual , Masculino , Humanos , Parceiros Sexuais
17.
Nano Lett ; 24(14): 4256-4264, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557048

RESUMO

Biological materials exhibit fascinating mechanical properties for intricate interactions at multiple interfaces to combine superb toughness with wondrous strength and stiffness. Recently, strong interlayer entanglement has emerged to replicate the powerful dissipation of natural proteins and alleviate the conflict between strength and toughness. However, designing intricate interactions in a strong entanglement network needs to be further explored. Here, we modulate interlayer entanglement by introducing multiple interactions, including hydrogen and ionic bonding, and achieve ultrahigh mechanical performance of graphene-based nacre fibers. Two essential modulating trends are directed. One is modulating dynamic hydrogen bonding to improve the strength and toughness up to 1.58 GPa and 52 MJ/m3, simultaneously. The other is tailoring ionic coordinating bonding to raise the strength and stiffness, reaching 2.3 and 253 GPa. Modulating various interactions within robust entanglement provides an effective approach to extend performance limits of bioinspired nacre and optimize multiscale interfaces in diverse composites.

18.
Nano Lett ; 24(21): 6386-6394, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743576

RESUMO

Adhesion ability and interfacial thermal transfer capacity at soft/hard interfaces are of critical importance to a wide variety of applications, ranging from electronic packaging and soft electronics to batteries. However, these two properties are difficult to obtain simultaneously due to their conflicting nature at soft/hard interfaces. Herein, we report a polyurethane/silicon interface with both high adhesion energy (13535 J m-2) and low thermal interfacial resistance (0.89 × 10-6 m2 K W-1) by regulating hydrogen interactions at the interface. This is achieved by introducing a soybean-oil-based epoxy cross-linker, which can destroy the hydrogen bonds in polyurethane networks and meanwhile can promote the formation of hydrogen bonds at the polyurethane/silicon interface. This study provides a comprehensive understanding of enhancing adhesion energy and reducing interfacial thermal resistance at soft/hard interfaces, which offers a promising perspective to tailor interfacial properties in various material systems.

19.
Nano Lett ; 24(21): 6302-6311, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748606

RESUMO

Photocatalytic synthesis based on the oxygen reduction reaction (ORR) has shown great promise for H2O2 production. However, the low activity and selectivity of 2e- ORR result in a fairly low efficiency of H2O2 production. Herein, we propose a strategy to enhance the proton-coupled electron transfer (PCET) process in covalent organic frameworks (COFs), thereby significantly boosting H2O2 photosynthesis. We demonstrated that the construction of a hydrogen-bonding network, achieved by anchoring the H3PO4 molecular network on COF nanochannels, can greatly improve both proton conductivity and photogenerated charge separation efficiency of COFs. Thus, COF@H3PO4 exhibited superior photocatalytic performance in generating H2O2 without sacrificial agents, with a solar-to-chemical conversion efficiency as high as 0.69%. Results indicated that a much more localized spatial distribution of energy band charge density on COF@H3PO4 led to efficient charge separation, and the small energy barrier of the rate-limiting step from *OOH to H2O2 endowed COF@H3PO4 with higher 2e- ORR selectivity.

20.
Nano Lett ; 24(10): 3290-3297, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426716

RESUMO

The wood industry faces challenges in producing eco-friendly, high-performance, and formaldehyde-free adhesives. In this study, carboxylated styrene-butadiene rubber (XSBR) was blended with polyamidoamine-epichlorohydrin (PAE) resin, and a controlled amount of CaCO3 powder was incorporated to create an adhesive with exceptional strength. The resulting three-layer plywood demonstrated remarkable dry and wet shear strengths of 3.09 and 2.36 MPa, respectively, and of 2.27 MPa after boiling water tests, comparable to that of phenolic resins. Additionally, the adhesive exhibited strong adhesion across various materials including glass, metal, etc. This exceptional performance was due to two primary factors: (1) the high-density chemical cross-linking reaction and the physical entanglement between XSBR and PAE; (2) the organic-inorganic hybrid involving metal ion complexation developed by CaCO3, which fostered molecular chain connections and enhanced the adhesive-material interface. These findings offer valuable references for further research in the field of wood adhesives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA