Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37242576

RESUMO

With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.

2.
Front Immunol ; 13: 1001526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275667

RESUMO

Ti-5Cu alloy has been proved to have excellent mechanical properties and cell compatibility and has certain antibacterial properties due to the addition of Cu. However, there are few studies on the effects of Ti-5Cu alloy on macrophage polarization and immune-related bone formation. In this study, we prepared Ti-5Cu alloy by three-dimensional printing technology and found that Ti-5Cu alloy presented a much smoother surface compared with Ti. In addition, the CCK-8 results indicated the Ti-5Cu alloy had no cytotoxicity to RAW264.7 cells by co-culture. The results of inductively coupled plasma mass spectrometry showed that the concentration of Cu2+ was 0.133 mg/L after 7 days of co-culture, and the CCK-8 results proved that Cu2+ had no cytotoxicity to RAW264.7 at this concentration. Then, we studied the effects of Ti-5Cu alloy on macrophage polarization; it was shown that the Ti-5Cu alloy is more prone to modulate the RAW264.7 polarization towards the M2 phenotype and the conditioned medium derived from Ti-5Cu alloy significantly promoted the proliferation and osteogenic differentiation of MC3T3-E1 cells. However, when the expression of Oncostatin M (OSM) gene of RAW264.7 was knocked down, the osteogenic differentiation of MC3T3-E1 cells was decreased. This suggests that the OSM secreted by RAW264.7 co-cultured with Ti-5Cu alloy could accelerate the osteogenic differentiation of MC3T3-E1 cells by acting on OSMR/gp130 receptors.


Assuntos
Ligas , Osteogênese , Ligas/farmacologia , Ligas/química , Titânio/farmacologia , Titânio/química , Oncostatina M , Meios de Cultivo Condicionados , Sincalida , Receptor gp130 de Citocina , Macrófagos , Fenótipo , Impressão Tridimensional , Antibacterianos
3.
Bone ; 141: 115569, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32745691

RESUMO

Treatment of atrophic non-unions, especially in long bones is a challenging problem in orthopedic surgery due to the high revision and failure rate after surgical intervention. Subsequently, there is a certain need for a supportive treatment option besides surgical treatment. In our previous study we gained first insights into the dynamic processes of atrophic non-union formation and observed a prolonged inflammatory reaction with upregulated TNF-α levels and bone resorption. In this study we aimed to improve bone regeneration of atrophic non-unions via TNF-α modulation in a previously established murine femoral segmental defect model. Animals that developed atrophic non-unions of the femur after 5 and 10 weeks were treated systemically for 10 and 5 weeks with Etanercept, a soluble TNF-α antibody. µCT scans and histology revealed bony bridging of the fracture gap in the treatment group, while bone formation in control animals without treatment was not evident. Moreover, osteoclasts were markedly decreased via modulation of the RANKL/OPG axis due to Etanercept treatment. Additionally, immunomodulatory effects via Etanercept could be observed as further inflammatory agents, such as TGF-ß, IL6, MMP9 and 13 were decreased in both treatment groups. This study is the first showing beneficial effects of Etanercept treatment on bone regeneration of atrophic non-union formation. Moreover, the results of this study provide a new and promising therapeutic option which might reduce the failure rate of revision surgeries of atrophic non-unions.


Assuntos
Fraturas não Consolidadas , Animais , Regeneração Óssea , Etanercepte/uso terapêutico , Consolidação da Fratura , Camundongos , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA