Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 218-237, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970714

RESUMO

BACKGROUND: The formation of large necrotic cores results in vulnerable atherosclerotic plaques, which can lead to severe cardiovascular diseases. However, the specific regulatory mechanisms underlying the development of necrotic cores remain unclear. METHODS: To evaluate how the modes of lesional cell death are reprogrammed during the development of atherosclerosis, the expression levels of key proteins that are involved in the necroptotic, apoptotic, and pyroptotic pathways were compared between different stages of plaques in humans and mice. Luciferase assays and loss-of-function studies were performed to identify the microRNA-mediated regulatory mechanism that protects foamy macrophages from necroptotic cell death. The role of this mechanism in atherosclerosis was determined by using a knockout mouse model with perivascular drug administration and tail vein injection of microRNA inhibitors in Apoe-/- mice. RESULTS: Here, we demonstrate that the necroptotic, rather than the apoptotic or pyroptotic, pathway is more activated in advanced unstable plaques compared with stable plaques in both humans and mice, which closely correlates with necrotic core formation. The upregulated expression of Ripk3 (receptor-interacting protein kinase 3) promotes the C/EBPß (CCAAT/enhancer binding protein beta)-dependent transcription of the microRNA miR-223-3p, which conversely inhibits Ripk3 expression and forms a negative feedback loop to regulate the necroptosis of foamy macrophages. The knockout of the Mir223 gene in bone marrow cells accelerates atherosclerosis in Apoe-/- mice, but this effect can be rescued by Ripk3 deficiency or treatment with the necroptosis inhibitors necrostatin-1 and GSK-872. Like the Mir223 knockout, treating Apoe-/- mice with miR-223-3p inhibitors increases atherosclerosis. CONCLUSIONS: Our study suggests that miR-223-3p expression in macrophages protects against atherosclerotic plaque rupture by limiting the formation of necrotic cores, thus providing a potential microRNA therapeutic candidate for atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Humanos , Animais , Camundongos , Retroalimentação , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Necrose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Knockout , Apolipoproteínas E , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Virol J ; 21(1): 184, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135096

RESUMO

Porcine circovirus 3 (PCV3) was first reported in the United States in 2016; this virus is considered to be involved in diverse pathologies, such as multisystem inflammation, porcine dermatitis and nephropathy syndrome, and reproductive disorders. However, successful isolation of PCV3 using cultured cells has been rare. In this study, we aimed to isolate PCV3 using primary porcine bone marrow-derived cells. Mononuclear cells were isolated from the femur bones of clinically healthy pigs. These primary cells were cultured for 6-10 days post-seeding and infected with PCV3-containing tissue homogenates. The cells were cultured for up to 37 days, and the culture medium was changed every 3-4 days. The growth curve of PCV3 in porcine bone marrow cells revealed a decline in growth during the first 10 days post-infection, followed by an increase leading to > 1010 genomic copies/mL of the cell culture supernatant; moreover, the virus was capable of passaging. The indirect fluorescent antibody assay for PCV3 infection revealed the presence of PCV3 capsid protein in the cytoplasm and nuclei of infected cells. Bone marrow cells were passaged for more than 20 generations (over 5 months), and PCV3 persistently infected the cells. PCV3-infected bone marrow cells expressed mesenchymal markers. These results reflect that primary porcine bone marrow-derived mesenchymal cells are permissive to PCV3 and continuously replicate a high copy number of the PCV3 genome. These findings regarding the high replication rate of PCV3 in bone marrow-derived mesenchymal cells could enhance our understanding of PCV3 pathogenicity.


Assuntos
Células da Medula Óssea , Circovirus , Animais , Suínos , Circovirus/fisiologia , Circovirus/isolamento & purificação , Circovirus/genética , Células da Medula Óssea/virologia , Células Cultivadas , Infecções por Circoviridae/virologia , Infecções por Circoviridae/veterinária , Doenças dos Suínos/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cultura de Vírus/métodos
3.
Biomarkers ; 29(2): 68-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299991

RESUMO

BACKGROUND: Fenpyroximate (FEN) is an acaricide that inhibits the complex I of the mitochondrial respiratory chain in mites. Data concerning mammalian toxicity of this acaricide are limited; thus the aim of this work was to explore FEN toxicity on Wistar rats, particularly on cardiac, pulmonary, and splenic tissues and in bone marrow cells. METHODS: rats were treated orally with FEN at 1, 2, 4, and 8 mg/Kg bw for 28 days. After treatment, we analyzed lipid profile, oxidative stress and DNA damage in rat tissues. RESULTS: FEN exposure increased creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH) activities, elevated total cholesterol (T-CHOL), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) concentrations, while decreasing high-density lipoprotein cholesterol (HDL-C). It inhibited acetylcholinesterase (AChE) activity, enhanced lipid peroxidation, protein oxidation, and modulated antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase). Comet assay indicated that FEN induced a dose-dependent DNA damage, contrasting with the micronucleus test showing no micronuclei formation. Nonetheless, FEN exhibited cytotoxicity to bone marrow cells, as evidenced by a reduction in the number of immature erythrocytes among total cells. CONCLUSION: FEN appears to carry out its genotoxic and cytotoxic activities most likely through an indirect pathway that involves oxidative stress.


Assuntos
Acaricidas , Acetilcolinesterase , Benzoatos , Pirazóis , Ratos , Animais , Ratos Wistar , Acetilcolinesterase/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Catalase/metabolismo , Peroxidação de Lipídeos , Dano ao DNA , Superóxido Dismutase/metabolismo , Colesterol , Lipídeos , Glutationa/metabolismo , Mamíferos/metabolismo
4.
Mol Biol Rep ; 51(1): 97, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194130

RESUMO

BACKGROUND: Interferon regulatory factors (IRF-1 and IRF-2) are transcription factors widely implicated in various cellular processes, including regulation of inflammatory responses to pathogens, cell proliferation, oncogenesis, differentiation, autophagy, and apoptosis. METHODS: We have studied the expression of IRF-1, IRF-2 mRNAs by RT-PCR, cellular localization of the proteins by immunofluorescence, and expression of mRNAs of genes regulated by IRF-1, IRF-2 by RT-PCR in mouse bone marrow cells (BMCs) and mesenchymal stem cells (MSCs). RESULTS: Higher level of IRF-1 mRNA was observed in BMCs and MSCs compared to that of IRF-2. Similarly, differential expression of IRF-1 and IRF-2 proteins was observed in BMCs and MSCs. IRF-1 was predominantly localized in the cytoplasm, whereas IRF-2 was localized in the nuclei of BMCs. MSCs showed nucleo-cytoplasmic distribution of IRF-1 and nuclear localization of IRF-2. Constitutive expression of IRF-1 and IRF-2 target genes: monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and caspase-1 was observed in both BMCs and MSCs. MSCs showed constitutive expression of the pluripotency-associated factors, Oct3/4 and Sox-2. Lipopolysaccharide (LPS)-treatment of MSCs induced prominent cellular localization of IRF-1 and IRF-2. CONCLUSIONS: Our results suggest that IRF-1 and IRF-2 exhibit differential expression of their mRNAs and subcellular localization of the proteins in BMCs and MSCs. These cells also show differential levels of constitutive expression of IRF-1 and IRF-2 target genes. This may regulate immune-responsive properties of BMCs and MSCs through IRF-1, IRF-2-dependent gene expression and protein-protein interaction. Regulating IRF-1 and IRF-2 may be helpful for immunomodulatory functions of MSCs for cell therapy and regenerative medicine.


Assuntos
Medula Óssea , Fatores Reguladores de Interferon , Células-Tronco Mesenquimais , Animais , Camundongos , Células da Medula Óssea , Citoplasma , Fatores Reguladores de Interferon/genética
5.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201296

RESUMO

Luminescent technology based on the luciferin-luciferase reaction has been extensively employed across various disciplines as a quantitative imaging modality. Owing to its non-invasive imaging capacity, it has evolved as a valuable in vivo bioimaging tool, particularly in small animal models in fields such as gene and cell therapies. We have previously successfully generated rats with a systemic expression of the luciferase gene at the Rosa26 locus. In this study, we transplanted bone marrow from these rats into micro-mini pigs and used in vivo imaging to non-invasively analyze the dynamics of the transplanted cells. In addition, we established that the rat-to-pig transplantation system is a discordant system, similar to the pig-to-human transplantation system. Thus, rat-to-pig transplantation may provide a clinically appropriate large animal model for pig-to-human xenotransplantation.


Assuntos
Transplante de Medula Óssea , Luciferases , Porco Miniatura , Transplante Heterólogo , Animais , Suínos , Ratos , Transplante de Medula Óssea/métodos , Transplante Heterólogo/métodos , Luciferases/metabolismo , Luciferases/genética , Humanos , Medições Luminescentes/métodos , Xenoenxertos , Luciferina de Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/química
6.
Foot Ankle Surg ; 30(3): 219-225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309989

RESUMO

BACKGROUND: Osteochondral lesions of the talus are common in patients suffering even minor trauma; timely diagnosis and treatment can prevent the development of early osteoarthritis. The objectives of this systematic review and meta-analysis were to evaluate the effects of additional procedures on arthroscopic ankle microperforations for osteochondral lesions. METHODS: A systematic literature search was conducted using PubMed-Medline, Cochrane Central, and Google Scholar to select clinical studies analyzing the efficacy of platelet-rich plasma (PRP), hyaluronic acid (HA), and bone marrow concentrate (BMC) procedures. Ten articles following PRISMA guidelines with a total of 464 patients were included in this review. Quality assessment using MINORS was performed, and all studies demonstrated high quality. RESULTS: The results of the systematic review showed benefits in all patients undergoing infiltrative therapy with PRP, hyaluronic acid, and BMC. The best results in terms of AOFAS score and VAS scale were found in patients undergoing PRP injection. The meta-analysis showed improvements in pain relief and return to daily activities in patients undergoing arthroscopic microperforations and PRP, although not reporting statistically significant results (p = 0.42). CONCLUSION: All treatment strategies reported better scores compared to the control groups. Among the various treatments analyzed, the addition of PRP appears to be the most valuable probably for the larger population receiving this treatment, showing excellent outcomes in pain reduction, clinical outcomes, and return to daily activities. LEVEL OF EVIDENCE: II.


Assuntos
Artroplastia Subcondral , Artroscopia , Tálus , Humanos , Transplante de Medula Óssea , Cartilagem Articular/lesões , Cartilagem Articular/cirurgia , Ácido Hialurônico/administração & dosagem , Plasma Rico em Plaquetas , Tálus/lesões , Tálus/cirurgia
7.
Cytotherapy ; 25(2): 162-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503865

RESUMO

BACKGROUND AIMS: Bone marrow-derived hematopoietic stem cell transplantation/hematopoietic progenitor cell transplantation (HSCT/HPCT) is widely used and one of the most useful treatments in clinical practice. However, the homing rate of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) by routine cell transfusion is quite low, influencing hematopoietic reconstitution after HSCT/HPCT. METHODS: The authors developed a micro-living motor (MLM) strategy to increase the number of magnetically empowered bone marrow cells (ME-BMCs) homing to the bone marrow of recipient mice. RESULTS: In the in vitro study, migration and retention of ME-BMCs were greatly improved in comparison with non-magnetized bone marrow cells, and the biological characteristics of ME-BMCs were well maintained. Differentially expressed gene analysis indicated that ME-BMCs might function through gene regulation. In the in vivo study, faster hematopoietic reconstitution was observed in ME-BMC mice, which demonstrated a better survival rate and milder symptoms of acute graft-versus-host disease after transplantation of allogeneic ME-BMCs. CONCLUSIONS: This study demonstrated that ME-BMCs serving as MLMs facilitated the homing of HSCs/HPCs and eventually contributed to earlier hematopoietic reconstitution in recipients. These data might provide useful information for other kinds of cell therapies.


Assuntos
Transplante de Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Células da Medula Óssea , Medula Óssea , Células-Tronco Hematopoéticas
8.
Clin Oral Investig ; 27(11): 6667-6675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794139

RESUMO

OBJECTIVE: This study aimed to compare the bone density and volume in patients with alveolar cleft reconstructions utilizing bone marrow aspirate concentrate with iliac graft versus iliac graft alone. MATERIAL AND METHODS: Thirty-six patients with unilateral alveolar cleft were randomly allocated into either an intervention group receiving an iliac bone graft mixed with bone marrow concentrate or a control group receiving an iliac bone graft. Cone beam CT was obtained preoperative, 6 and 12 months postoperatively to assess the bone density of the graft and bone volume of the alveolar defect, and then, the bone loss ratio was calculated. RESULTS: Bone volume and bone density demonstrated a statistically significant increase in the intervention group at 6 and 12 months. In contrast, the bone loss ratio decreased significantly in the intervention group throughout the follow-up period. CONCLUSION: A combination of bone marrow concentrate and iliac cancellous bone in alveolar cleft reconstruction may improve bone densities and volume in addition to decreasing graft loss rate. CLINICAL SIGNIFICANCE: Using of bone marrow aspirate concentrate will decrease the amount of the graft needed and decrease the ratio of bone loss at the grafted site by the time. Trial registration ClinicalTrials.org ( NCT04414423 ) 4/6/2020.


Assuntos
Enxerto de Osso Alveolar , Fenda Labial , Fissura Palatina , Humanos , Osso Esponjoso , Medula Óssea , Fissura Palatina/cirurgia , Transplante Ósseo , Ílio/transplante , Fenda Labial/cirurgia
9.
J Biol Chem ; 296: 100491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662400

RESUMO

Serine palmitoyltransferase complex (SPT) mediates the first and rate-limiting step in the de novo sphingolipid biosynthetic pathway. The larger subunits SPTLC1 and SPTLC2/SPTLC3 together form the catalytic core while a smaller third subunit either SSSPTA or SSSPTB has been shown to increase the catalytic efficiency and provide substrate specificity for the fatty acyl-CoA substrates. The in vivo biological significance of these smaller subunits in mammals is still unknown. Here, using two null mutants, a conditional null for ssSPTa and a null mutant for ssSPTb, we show that SSSPTA is essential for embryogenesis and mediates much of the known functions of the SPT complex in mammalian hematopoiesis. The ssSPTa null mutants are embryonic lethal at E6.5 much like the Sptlc1 and Sptlc2 null alleles. Mx1-Cre induced deletion of ssSPTa leads to lethality and myelopoietic defect. Chimeric and competitive bone marrow transplantation experiments show that the defect in myelopoiesis is accompanied by an expansion of the Lin-Sca1+c-Kit+ stem and progenitor compartment. Progenitor cells that fail to differentiate along the myeloid lineage display evidence of endoplasmic reticulum stress. On the other hand, ssSPTb null mice are homozygous viable, and analyses of the bone marrow cells show no significant difference in the proliferation and differentiation of the adult hematopoietic compartment. SPTLC1 is an obligatory subunit for the SPT function, and because Sptlc1-/- and ssSPTa-/- mice display similar defects during development and hematopoiesis, we conclude that an SPT complex that includes SSSPTA mediates much of its developmental and hematopoietic functions in a mammalian model.


Assuntos
Acil Coenzima A/metabolismo , Células da Medula Óssea/citologia , Hematopoese/fisiologia , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/biossíntese , Animais , Células da Medula Óssea/metabolismo , Domínio Catalítico , Diferenciação Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina C-Palmitoiltransferase/metabolismo , Especificidade por Substrato
10.
FASEB J ; 35(3): e21413, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570785

RESUMO

Successful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells. A total of 41.0% of maternal IUT recipients (mIUT) were chimeras (mean donor chimerism 3.0 ± 1.3%) versus 75.0% of paternal IUT recipients (pIUT, 3.6 ± 1.1%). Chimeras showed higher maternal microchimerism of CD4, CD8, and CD19 than non-chimeras. These maternal cells showed minimal responsiveness to B6 or BALB/c stimulation. To interrogate tolerance, mIUT were injected postnatally with 5E+6 B6 cells/pup; pIUT received BALB/c cells. IUT-treated pups showed no changes in trafficked maternal or fetal immune cell levels compared to controls. Donor-specific IgM and IgG were expressed by 1%-3% of recipients. mIUT splenocytes showed greater proliferation of regulatory T cells (Treg) upon BALB/c stimulation, while B6 stimulation upregulated the pro-inflammatory cytokines more than BALB/c. pIUT splenocytes produced identical Treg and cytokine responses to BALB/c and B6 cells, with higher Treg activity and lower pro-inflammatory cytokine expression upon exposure to BALB/c. In contrast, naïve fetal splenocytes demonstrated greater alloresponsiveness to BALB/c compared to B6 cells. Thus pIUT, associated with increased maternal cell trafficking, modulates fetal Treg, and cytokine responsiveness to donor cells more efficiently than mIUT, resulting in improved engraftment. Paternal donor cells may be considered alternatively to maternal donor cells for intrauterine and postnatal transplantation to induce tolerance and maintain engraftment.


Assuntos
Transplante de Medula Óssea , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/imunologia , Transplante Homólogo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Transplante de Medula Óssea/métodos , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Quimeras de Transplante/imunologia , Transplante Homólogo/métodos
11.
Drug Chem Toxicol ; 45(4): 1470-1475, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33143479

RESUMO

Herniarin is a member of simple coumarins, which are a group of common secondary metabolites in plants. The aim of the present study was to investigate the effects of herniarin on genotoxicity and apoptosis induced by cisplatin in rat bone marrow cells. The experimental rats were treated with four different doses of herniarin (50, 100, 200, and 400 mg/kg.) for seven consecutive days. The cisplatin (5 mg/kg, i.p.) was injected into mice 1 h after the last oral herniarin administration on the seventh day. The protective effects of herniarin were investigated by hematological test, flow cytometry, micronucleus assay, and reactive oxygen species (ROS) level analysis. Herniarin caused a marked reduction in the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs) 24 h after exposure to cisplatin at doses of 200 and 400 mg/kg. Furthermore, herniarin significantly increased the levels of both red and white blood cells in peripheral blood. Treatment of rats with herniarin before cisplatin, significantly decreased the percentage of apoptotic and necrotic cells and the ROS level in bone marrow cells. This study indicated that herniarin can be introduced as a new chemoprotective agent against cisplatin-induced genotoxicity in the future.


Assuntos
Células da Medula Óssea , Cisplatino , Animais , Apoptose , Cisplatino/toxicidade , Eritrócitos , Camundongos , Testes para Micronúcleos , Ratos , Espécies Reativas de Oxigênio , Umbeliferonas
12.
Surgeon ; 20(3): e3-e6, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33931346

RESUMO

BACKGROUND: In most patients with severe, chronic extremity ischemic diseases, intervention or surgical treatment is often not suitable. Combination of intramuscular transplantation of autologous monocular bone marrow cells (AMBMCs) and sympathectomy (L2, 3) has been proved therapeutically beneficial. METHODS: We studied 170 patients (combined group 80, control group 90) with extremity ischemia (TAO, ASO FontaineⅡ,Ⅲ, Ⅳ) between January 2013 and September 2019. RESULTS: In contrast to pre-operation, the walking distance of patients increased significantly (from 61.34 ± 52.23 m to 156.0 ± 32.4 m, p < 0.01), and the ankle-brachial index (ABI) remarkably improved (from 0.28 ± 0.13 to 0.59 ± 0.23, p < 0.05). CONCLUSION: Combined therapy is feasible and effective for patients with peripheral arterial disease (PAD).


Assuntos
Transplante de Medula Óssea , Doença Arterial Periférica , Células da Medula Óssea , Doença Crônica , Humanos , Isquemia/cirurgia , Doença Arterial Periférica/cirurgia , Simpatectomia , Transplante Autólogo , Resultado do Tratamento
13.
Korean J Physiol Pharmacol ; 26(3): 157-164, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477543

RESUMO

Disulfiram (DSF) is an aldehyde dehydrogenase inhibitor. DSF has potent anti-cancer activity for solid and hematological malignancies. Although the effects on cancer cells have been proven, there have been few studies on DSF toxicity in bone marrow cells (BMs). DSF reduces the metabolic activity and the mitochondrial membrane potential of BMs. In subset analyses, we confirmed that DSF does not affect the proportion of BMs. In addition, DSF significantly impaired the metabolic activity and differentiation of BMs treated with granulocyte macrophage-colony stimulating factor, an essential growth and differentiation factor for BMs. To measure DSF toxicity in BMs in vivo, mice were injected with 50 mg/kg, a dose used for anti-cancer effects. DSF did not significantly induce BM toxicity in mice and may be tolerated by antioxidant defense mechanisms. This is the first study on the effects of DSF on BMs in vitro and in vivo. DSF has been widely studied as an anti-cancer drug candidate, and many anti-cancer drugs lead to myelosuppression. In this regard, this study can provide useful information to basic science and clinical researchers.

14.
Artigo em Zh | MEDLINE | ID: mdl-36052584

RESUMO

Objective: To investigate the protective effect of diallyl sulfide (DAS) , against benzene-induced genetic damage in rat. Methods: In September 2018, Sixty adult male adaptive feeding 5 days, were randomly divided into six groups according to their weight. Control groups, DAS control groups, benzene model groups, benzene+low DAS groups, benzene+middle DAS groups, benzene+High DAS group, 10 in each group. Rats in the DAS and DAS control group were orally given DAS at 40, 80, 160, 160 mg/kg, blank control and benzene model groups were given corn oil in the same volume. 2 h later, the rats in the benzene model and DAS treatment groups were given gavage administration of benzene (1.3 g/kg) mixed with corn oil (50%, V/V) , blank and DAS control groups were given corn oil in the same volume. Once a day, for 4 weeks. Samples were collected for subsequent testing. Results: Compared with the blank control group, In benzene treated rat, peripheral WBC count was reduced 65.06% (P=0.003) , lymphocyte ratiowas reduced (P=0.000) , micronucleus rate was increased (P=0.000) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in BMCs were increased 32.69%、32.64% (P=0.001、0.008) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in PBLs were increased 397.70%、396.26% (P=0.000、P=0.003) respectively. Compared with the benzene model group, the WBC count increased respectively (P=0.000、0.003、0.006) and the micronucleus rate decreased (P=0.000、0.000、0.000) in the DAS groups, Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in BMCs were significantly reduced in the high DAS groups (P=0.000、0.000) , Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in PBLs were significantly reduced in the low, middle, high DAS groups (P=0.000、0.000) . Conclusion: DAS can effectively suppress benzene induced genotoxic damage in rats.


Assuntos
Compostos Alílicos , Benzeno , Animais , Masculino , Ratos , Compostos Alílicos/farmacologia , Benzeno/toxicidade , Óleo de Milho , Dano ao DNA , Sulfetos/farmacologia
15.
J Cell Mol Med ; 25(22): 10604-10613, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687276

RESUMO

T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co-culturing HSC-enriched bone marrow cells (HSC-eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC-eBMCs and iTECs cultured with IL-2 + IL-7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T-cell receptors. Notably, the induced lymphocytes contained few or no αßT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia-bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linfócitos Intraepiteliais/metabolismo , Transferência Adotiva , Animais , Biomarcadores , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Técnicas de Cocultura , Células Epiteliais/citologia , Células-Tronco Hematopoéticas/citologia , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Linfócitos Intraepiteliais/citologia , Camundongos , Camundongos Transgênicos , Transplante Autólogo
16.
Cell Tissue Res ; 384(3): 721-734, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33977324

RESUMO

Bone marrow cells (BMCs) from obese Swiss mice fed with Western diet show mitochondrial dysfunction. Obesity interferes with BMCs disrupting energetic metabolism, stimulating apoptosis, and reducing cell proliferation since adipose tissue releases inflammatory adipokines into the medullar microenvironment. These changes lead to reduction of BMC differentiation capacity and hematopoiesis impairment, a process responsible for blood cell continuous production through hematopoietic stem cells (HSCs). This work aimed to analyze the effects of IGF-1 therapy on BMC viability in Western diet-induced obesity, in vivo. We observed that after only 1 week of treatment, obese Swiss mice presented reduced body weight and visceral fat and increased mitochondrial oxidative capacity and coupling, indicating mitochondrial function improvement. In addition, IGF-1 was able to reduce apoptosis of total BMCs, stem cell subpopulations (hematopoietic and mesenchymal), and leukocytes, restoring all progenitor hematopoietic lineages. The treatment also contributed to increase proliferative capacity of hematopoietic stem cells and leukocytes, keeping the hematopoietic and immune systems balanced. Therefore, we conclude that IGF-1 short period therapy improved BMC survival, proliferation, and differentiation capacity in obese Swiss mice.


Assuntos
Células da Medula Óssea , Fator de Crescimento Insulin-Like I/farmacologia , Obesidade , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/patologia
17.
Biomed Microdevices ; 23(3): 41, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379212

RESUMO

Despite great developments in inertial microfluidics, there is still a lack of knowledge to precisely define the particles' behavior in the microchannels. In the present study, as a prerequisite to experimental studies, numerical simulations have been used to study the capture efficiency of target particles in the contraction-expansion microchannel, aiming to provide an estimation of the conditions at which the channel performs best. Fluid analysis based on Navier-Stokes equations is conducted using the finite element method to determine the streamlines and vortices. The highest capture efficiency for 10, 15, and 19-micron particles occurs when the center of the vortex is approximately in the middle of the wide section (at the flow rate of 0.35 ml/min). In addition to investigating the effect of particle diameter and input flow rate, the effect of channel geometry parameters (channel height and initial length of the channel) on particle trapping has also been studied. Also, to consider great interest in separating different-sized bioparticles from a sample, a three-stage platform has been designed to separate four types of bone marrow cells and evaluate the possibility of using contraction-expansion channels in this application.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Células da Medula Óssea , Estudos de Viabilidade , Tamanho da Partícula
18.
Eur Heart J ; 41(38): 3702-3710, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32860406

RESUMO

AIMS: Bone marrow-derived mononuclear cell (BM-MNC) therapy may improve myocardial recovery in patients following acute myocardial infarction (AMI), though existing trial results are inconsistent. METHODS AND RESULTS: Originally an open-label, multicentre Phase III trial, BAMI was designed to demonstrate the safety and efficacy of intracoronary infusion of BM-MNCs in reducing the time to all-cause mortality in patients with reduced left ventricular ejection fraction (LVEF, ≤45%) after primary angioplasty (PPCI) for ST-elevation AMI. Unexpectedly low recruitment means the trial no longer qualifies as a hypothesis-testing trial, but is instead an observational study with no definitive conclusions possible from statistical analysis. In total, 375 patients were recruited: 185 patients were randomized to the treatment arm (intracoronary infusion of BM-MNCs 2-8 days after PPCI) and 190 patients to the control arm (optimal medical therapy). All-cause mortality at 2 years was 3.26% [6 deaths; 95% confidence interval (CI): 1.48-7.12%] in the BM-MNC group and 3.82% (7 deaths; 95% CI: 1.84-7.84%) in the control group. Five patients (2.7%, 95% CI: 1.0-5.9%) in the BM-MNC group and 15 patients (8.1%, CI : 4.7-12.5%) in the control group were hospitalized for heart failure during 2 years of follow-up. Neither adverse events nor serious adverse events differed between the two groups. There were no patients hospitalized for stroke in the control group and 4 (2.2%) patients hospitalized for stroke in the BM-MNC group. CONCLUSIONS: Although BAMI is the largest trial of autologous cell-based therapy in the treatment of AMI, unexpectedly low recruitment and event rates preclude any meaningful group comparisons and interpretation of the observed results.


Assuntos
Infarto do Miocárdio , Função Ventricular Esquerda , Medula Óssea , Transplante de Medula Óssea , Humanos , Infarto do Miocárdio/terapia , Volume Sistólico , Transplante Autólogo , Resultado do Tratamento
19.
Drug Chem Toxicol ; 44(4): 386-393, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31072151

RESUMO

Metformin is widely used as an oral hypoglycemic drug in the management of type 2 diabetes mellitus. This study evaluated the possible protective effects of metformin against cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Two different doses of metformin (50 and 100 mg/kg b.w.) were administered orally to experimental animals for seven consecutive days. On the seventh day, the rats were exposed to cisplatin (5 mg/kg, i.p.) 1 h after the last oral metformin administration. Rats in the control group were treated orally with 10 ml/kg PBS for 7 consecutive days and a single intraperitoneal injection of saline (0.9%) on the 7th day. The antagonistic effects of metformin against cisplatin were evaluated using micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis, and flow cytometry. Treatment with 50 and 100 mg/kg metformin before cisplatin injection produced a significant reduction in the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs) 24 h after cisplatin treatment with a corresponding increase in the PCE/(PCE + NCE) ratio. Moreover, metformin markedly elevated the levels of both red and white blood cells in peripheral blood and decreased the percentage of apoptotic cells and the ROS level in bone marrow cells of rats treated with cisplatin. The data suggest that metformin has potential chemoprotective properties in rat bone marrow after cisplatin treatment, which support its candidature as a potential chemoprotective agent for cancer patients undergoing chemotherapy.


Assuntos
Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Cisplatino/toxicidade , Metformina/farmacologia , Animais , Antineoplásicos/toxicidade , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Masculino , Metformina/administração & dosagem , Testes para Micronúcleos , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
20.
J Cell Mol Med ; 24(22): 13472-13480, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33058427

RESUMO

TG-Interacting Factor 1 (Tgif1) affects proliferation and differentiation of myeloid cells and regulates self-renewal of haematopoietic stem cells (HSCs). To determine its impact on leukaemic haematopoiesis, we induced acute or chronic myeloid leukaemias (AML or CML) in mice by enforced expression of MLL-AF9 or BCR-ABL, respectively, in Tgif1+/+ or Tgif1-/- haematopoietic stem and progenitor cells (HSPCs) and transplanted them into syngeneic recipients. We find that loss of Tgif1 accelerates leukaemic progression and shortens survival in mice with either AML or CML. Leukaemia-initiating cells (LICs) occur with higher frequency in AML among mice transplanted with MLL-AF9-transduced Tgif1-/- HSPCs than with Tgif1+/+ BMCs. Moreover, AML in mice generated with Tgif1-/- HSPCs are chemotherapy resistant and relapse more rapidly than those whose AML arose in Tgif1+/+ HSPCs. Whole transcriptome analysis shows significant alterations in gene expression profiles associated with transforming growth factor-beta (TGF-beta) and retinoic acid (RA) signalling pathways because of Tgif1 loss. These findings indicate that Tgif1 has a protective role in myeloid leukaemia initiation and progression, and its anti-leukaemic contributions are connected to TGF-beta- and RA-driven functions.


Assuntos
Biomarcadores Tumorais , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Proteínas Repressoras/deficiência , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas de Homeodomínio , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Knockout , Prognóstico , Recidiva , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA