Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364762

RESUMO

Ischemic stroke (IS) is a significant and potentially life-threatening disease with limited treatment options, often resulting in severe disability. Bone marrow stromal cells (BMSCs) transplantation has exhibited promising neuroprotection following cerebral ischemia-reperfusion injury (CIRI). However, the effectiveness is hindered by their low homing rate when administered through the vein. In this study, we aimed to enhance the homing ability of BMSCs through lentivirus transfection to express fucosyltransferase 7. This glycosylation engineered CD44 on BMSCs to express hematopoietic cell E-selectin/L-selectin ligand (HCELL), which is the most potent E-selectin ligand. Following enforced HCELL expression, the transplantation of BMSCs was then evaluated in a middle cerebral artery occlusion (MCAO) model. Results showed that HCELL+BMSCs significantly ameliorated neurological deficits and reduced the volume of cerebral infarction. Furthermore, the transplantation led to a decrease in apoptosis by up-regulating BCL-2 and down-regulating BAX, also reduced the mRNA levels of inflammatory factors, such as interleukin-1ß (IL-1ß), IL-2, IL-6 and tumor necrosis factor-alpha (TNF-α) in the ischemic brain tissue. Notably, enforced HCELL expression facilitated the migration of BMSCs towards cerebral ischemic lesions and their subsequent transendothelial migration through the up-regulation of PTGS-2, increased production of PGE2 and activation of VLA-4. In summary, our study demonstrates that transplantation of HCELL+BMSCs effectively alleviates CIRI, and that enforced HCELL expression enhances the homing of BMSCs to cerebral ischemic lesions and their transendothelial migration via PTGS-2/PGE2/VLA-4. These findings indicate that enforced expression of HCELL on BMSCs could serve as a promising therapeutic strategy for the treatment of ischemic stroke.

2.
Am J Physiol Renal Physiol ; 326(2): F167-F177, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969103

RESUMO

This study aimed to investigate the role of bone marrow stromal cell antigen-1 (Bst1; also known as CD157) in acute kidney injury (AKI). Bst1 is a cell surface molecule with various enzymatic activities and downstream intracellular signaling pathways that modulate the immune response. Previous research has linked Bst1 to diseases such as ovarian cancer, Parkinson's disease, and rheumatoid arthritis. We used bilateral ischemia-reperfusion injury (IRI) as an AKI model and created bone marrow chimeric mice to evaluate the role of Bst1 in bone marrow-derived cells. We also used flow cytometry to identify Bst1/CD157 expression in hematopoietic cells and evaluate immune cell dynamics in the kidney. The findings showed that Bst1-deficient (Bst1-/-) mice were protected against renal bilateral IRI. Bone marrow chimera experiments revealed that Bst1 expression on hematopoietic cells, but not parenchymal cells, induced renal IRI. Bst1 was mainly found in B cells and neutrophils by flow cytometry of the spleen and bone marrow. In vitro, migration of neutrophils from Bst1-/- mice was suppressed, and adoptive transfer of neutrophils from wild-type Bst1+/+ mice abolished the renal protective effect in Bst1 knockout mice. In conclusion, the study demonstrated that Bst1-/- mice are protected against renal IRI and that Bst1 expression in neutrophils plays a crucial role in inducing renal IRI. These findings suggest that targeting Bst1 in neutrophils could be a potential therapeutic strategy for AKI.NEW & NOTEWORTHY Acute kidney injury (AKI), a serious disease for which there is no effective Federal Drug Administration-approved treatment, is associated with high mortality rates. Bone marrow stromal cell antigen-1 (Bst1) is a cell surface molecule that can cause kidney fibrosis, but its role in AKI is largely unknown. Our study showed that Bst1-/- mice revealed a protective effect against renal bilateral ischemia-reperfusion injury (IRI). Adoptive transfer studies confirmed that Bst1 expression in hematopoietic cells, especially neutrophils, contributed to renal bilateral IRI.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Camundongos , Animais , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Rim/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Neutrófilos/metabolismo , Camundongos Knockout , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL
3.
J Med Virol ; 96(5): e29659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747016

RESUMO

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Assuntos
Antígenos CD , Proteína 5 Relacionada à Autofagia , Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Vírus da Hepatite B , Replicação Viral , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Técnicas de Silenciamento de Genes , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Células Hep G2 , Hepatite B/virologia , Hepatite B/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Transdução de Sinais , Antígeno 2 do Estroma da Médula Óssea/metabolismo
4.
Genomics ; 115(4): 110636, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150230

RESUMO

Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer worldwide. Bone marrow stromal cells (BMSCs) play an essential role in tumor development by secreting exosomes. Scavenger receptor class A member 5 (SCARA5) is a newly identified tumor suppressor. This study aimed to investigate the effects of BMSCs-derived exosomes (BMSCs-Exos) on CRC development and to explore their regulatory mechanisms. BMSCs-Exos showed an oval-shaped, bilayer membrane structure. BMSCs-Exos inhibited growth and motility of CRC cells, while BMSCs-Exos with SCARA5 knockdown significantly promoted cell proliferation and movement. Exosomal SCARA5 also effectively suppressed colorectal tumor growth in mouse xenografts. Further analysis revealed that exosomal SCARA5 inhibited the phosphorylation of protein kinase B and phosphoinositide 3-kinase in both CRC cells and tumors. In conclusion, SCARA5 in BMSCs-Exos inhibited CRC progression by inactivating PI3K/Akt, thus suggesting the potential clinical application of SCARA5-containing BMSCs-Exos for CRC treatment.


Assuntos
Neoplasias Colorretais , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/metabolismo , Neoplasias Colorretais/metabolismo , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Receptores Depuradores Classe A/metabolismo
5.
BMC Cancer ; 22(1): 554, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581599

RESUMO

BACKGROUND: While prostate cancer (PCa) cells most often metastasize to bone in men, species-specific differences between human and mouse bone marrow mean that this pattern is not faithfully replicated in mice. Herein we evaluated the impact of partially humanizing mouse bone marrow with human bone marrow-derived stromal cells (BMSC, also known as "mesenchymal stem cells") on human PCa cell behaviour. METHODS: BMSC are key cellular constituents of marrow. We used intrafemoral injection to transplant 5 × 105 luciferase (Luc) and green fluorescence protein (GFP) expressing human BMSC (hBMSC-Luc/GFP) into the right femur of non-obese diabetic (NOD)-severe combined immunodeficiency (scid) interleukin (IL)-2γ-/- (NSG) mice. Two weeks later, 2.5 × 106 PC-3 prostate cancer cells expressing DsRed (PC-3-DsRed) were delivered into the mice via intracardiac injection. PC-3-DsRed cells were tracked over time using an In Vivo Imaging System (IVIS) live animal imaging system, X-ray and IVIS imaging performed on harvested organs, and PC-3 cell numbers in femurs quantified using flow cytometry and histology. RESULTS: Flow cytometry analysis revealed greater PC-3-DsRed cell numbers within femurs of the mice that received hBMSC-Luc/GFP. However, while there were overall greater PC-3-DsRed cell numbers in these animals, there were not more PC-3-DsRed in the femurs injected with hBMSC-Luc/GFP than in contralateral femurs. A similar proportion of mice in with or without hBMSC-Luc/GFP had bone lessions, but the absolute number of bone lesions was greater in mice that had received hBMSC-Luc/GFP. CONCLUSION: PC-3-DsRed cells preferentially populated bones in mice that had received hBMSC-Luc/GFP, although PC-3-DsRed cells not specifically localize in the bone marrow cavity where hBMSC-Luc/GFP had been transplanted. hBMSC-Luc/GFP appear to modify mouse biology in a manner that supports PC-3-DsRed tumor development, rather than specifically influencing PC-3-DsRed cell homing. This study provides useful insights into the role of humanizing murine bone marrow with hBMSC to study human PCa cell biology.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Próstata , Animais , Medula Óssea , Células da Medula Óssea , Proliferação de Células , Fêmur , Proteínas de Fluorescência Verde/genética , Humanos , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos NOD , Neoplasias da Próstata/genética
6.
Int J Neurosci ; : 1-10, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36458531

RESUMO

OBJECTIVES: This study aimed to produce an acellular spinal cord scaffold-bone marrow stromal cell (ASCS-BMSC) complex in which the growth of BMSCs transplanted into the spinal cord of rats could be simulated in vitro, facilitating the observation and evaluation of the growth of BMSCs on the ASCS for the first time. METHODS: Freeze-thaw, chemical extraction and mechanical shaking approaches were used to remove the cellular components and prepare a rat ASCS containing only the extracellular matrix (ECM) structure from the rat spinal cord. BMSCs were embedded into ASCSs and freeze-dried agarose scaffolds (FASs), and cell migration and proliferation were observed via fluorescence microscopy and the MTT assay. RESULTS: Compared with the normal rat spinal cord, the ASCS had no cell structure and retained ECM components such as type IV collagen, fibronectin and laminin, showing a three-dimensional network structure with good voids. The growth and proliferation of BMSCs on the ASCS was good, as shown by the MTT assay. Scanning electron microscopy showed that BMSCs covered 65% of the ASCS surface, and the mitochondria of BMSCs were developed and adhered to collagen fibres, as demonstrated by transmission electron microscopy. HE staining showed that BMSCs could grow inside the ASCS, and immunohistochemical staining showed that BMSCs still expressed CD44 and CD90 on the ASCS and had stem cell characteristics. CONCLUSIONS: The results of the experiment indicate that the ASCS has the ability to improve cell adhesion and proliferation. Thus, the ASCS-BMSC combination may be used to treat spinal cord injury.

7.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498907

RESUMO

Tissue nonspecific alkaline phosphatase (TNAP/Alpl) is associated with cell stemness; however, the function of TNAP in mesenchymal progenitor cells remains largely unknown. In this study, we aimed to establish an essential role for TNAP in bone and muscle progenitor cells. We investigated the impact of TNAP deficiency on bone formation, mineralization, and differentiation of bone marrow stromal cells. We also pursued studies of proliferation, mitochondrial function and ATP levels in TNAP deficient bone and muscle progenitor cells. We find that TNAP deficiency decreases trabecular bone volume fraction and trabeculation in addition to decreased mineralization. We also find that Alpl-/- mice (global TNAP knockout mice) exhibit muscle and motor coordination deficiencies similar to those found in individuals with hypophosphatasia (TNAP deficiency). Subsequent studies demonstrate diminished proliferation, with mitochondrial hyperfunction and increased ATP levels in TNAP deficient bone and muscle progenitor cells, plus intracellular expression of TNAP in TNAP+ cranial osteoprogenitors, bone marrow stromal cells, and skeletal muscle progenitor cells. Together, our results indicate that TNAP functions inside bone and muscle progenitor cells to influence mitochondrial respiration and ATP production. Future studies are required to establish mechanisms by which TNAP influences mitochondrial function and determine if modulation of TNAP can alter mitochondrial respiration in vivo.


Assuntos
Trifosfato de Adenosina/biossíntese , Fosfatase Alcalina/metabolismo , Osso e Ossos/metabolismo , Respiração Celular , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/fisiologia , Animais , Osso e Ossos/fisiologia , Calcificação Fisiológica , Diferenciação Celular , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiologia , Osteogênese , Crânio/metabolismo , Crânio/fisiologia
8.
J Biol Chem ; 294(27): 10503-10518, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118237

RESUMO

Type I interferons (IFN-I) are key innate immune effectors predominantly produced by activated plasmacytoid dendritic cells (pDCs). By modulating immune responses at their foundation, IFNs can widely reshape immunity to control infectious diseases and malignancies. Nevertheless, their biological activities can also be detrimental to surrounding healthy cells, as prolonged IFN-I signaling is associated with excessive inflammation and immune dysfunction. The interaction of the human pDC receptor immunoglobulin-like transcript 7 (ILT7) with its IFN-I-regulated ligand, bone marrow stromal cell antigen 2 (BST2) plays a key role in controlling the IFN-I amounts produced by pDCs in response to Toll-like receptor (TLR) activation. However, the structural determinants and molecular features of BST2 that govern ILT7 engagement and activation are largely undefined. Using two functional assays to measure BST2-stimulated ILT7 activation as well as biophysical studies, here we identified two structurally-distinct regions of the BST2 ectodomain that play divergent roles during ILT7 activation. We found that although the coiled-coil region contains a newly defined ILT7-binding surface, the N-terminal region appears to suppress ILT7 activation. We further show that a stable BST2 homodimer binds to ILT7, but post-binding events associated with the unique BST2 coiled-coil plasticity are required to trigger receptor signaling. Hence, BST2 with an unstable or a rigid coiled-coil fails to activate ILT7, whereas substitutions in its N-terminal region enhance activation. Importantly, the biological relevance of these newly defined domains of BST2 is underscored by the identification of substitutions having opposing potentials to activate ILT7 in pathological malignant conditions.


Assuntos
Antígeno 2 do Estroma da Médula Óssea/metabolismo , Receptores Imunológicos/metabolismo , Sequência de Aminoácidos , Antígeno 2 do Estroma da Médula Óssea/química , Antígeno 2 do Estroma da Médula Óssea/genética , Linhagem Celular , Dimerização , Humanos , Mutagênese , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Alinhamento de Sequência
9.
J Cell Physiol ; 234(10): 18086-18097, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30887515

RESUMO

S17 is a clonogenic bone marrow stromal (BMS) cell line derived from mouse that has been extensively used to assess both human and murine hematopoiesis support capacity. However, very little is known about the expression of potassium ion channels and their function in cell survival and migration in these cells. Thus, the present study was designed to characterize potassium ion channels using electrophysiological and molecular biological approaches in S17 BMS cells. The whole-cell configuration of the patch clamp technique has been applied to identify potassium ion currents and reverse transcription polymerase chain reaction (RT-PCR) used to determine their molecular identities. Based on gating kinetics and pharmacological modulation of the macroscopic currents we found the presence of four functional potassium ion channels in S17 BMS cells. These include a current rapidly activated and inactivated, tetraethylammonium-sensitive, (IKV ) in most (50%) cells; a fast activated and rapidly inactivating A-type K + current (IK A -like); a delayed rectifier K + current (IK DR ) and an inward rectifier potassium current (IK IR ), found in, respectively 4.5%, 26% and 24% of these cells. RT-PCR confirmed the presence of mRNA transcripts for the alpha subunit of the corresponding functional ion channels. Additionally, functional assays were performed to investigate the importance of potassium currents in cell survival and migration. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analyses revealed a reduction in cell viability, while wound healing assays revealed reduced migration potential in cells incubated with different potassium channel blockers. In conclusion, our data suggested that potassium currents might play a role in the maintenance of overall S17 cell ionic homeostasis directly affecting cell survival and migration.


Assuntos
Movimento Celular , Células-Tronco Mesenquimais/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular , Ativação do Canal Iônico , Cinética , Potenciais da Membrana , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Transdução de Sinais
10.
J Cell Physiol ; 234(11): 19702-19714, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30953364

RESUMO

Resistance to chemotherapy represents a major cause for treatment failure in multiple myeloma (MM). Herein, this study was conducted to explore the effect of SDF-1/CXCR4 and interleukin-6 (IL-6) in MM cell adhesion-mediated chemoresistance. Enzyme-linked immunosorbent assay was applied to detect expressions of SDF-1α and IL-6 in MM patients and healthy controls. RPMI-8226 cells and isolated bone marrow stromal cells (BMSCs) were stimulated using recombinant SDF-1α and IL-6. Effect of cocultured BMSCs and RPMI-8226 cells on chemosensitivity and apoptosis of RPMI-8226 cells was analyzed. Effect of doxorubicin on the adhesion rate of RPMl-8226 cells to BMSCs was analyzed by calcitonin test. Effect of SDF-1α-induced upregulation of IL-6 on chemotherapeutic resistance and apoptosis of RPMI-8226 cells in adhesion state was analyzed. Cell adhesion model was treated with recombinant protein SDF-1α and phosphoinositide 3-kinase (P13K) inhibitor Wortmarmin. The levels of P13K and protein kinase B (AKT) and its phosphorylation as well as the expression of IL-6 were analyzed. SDF-1α was positively correlated with IL-6. Recombinant human SDF-1α increased IL-6 expression and induced IL-6 secretion in a time- and dose-dependent manner in BMSCs, which was inhibited by IL-6 and SDF-1α neutralizing antibodies. Coculture of MM cells with BMSCs increased the drug resistance and inhibited the apoptosis on MM cells. SDF-1α-induced IL-6 upregulation mediates chemoresistance and apoptosis of RPMI-8226 cells in adhesion state. SDF-1α may up-regulate the expression of IL-6 by activating the P13K/AKT signaling pathway. SDF-1/CXCR4 may up-regulate the expression of IL-6 through the activation of the P13K/AKT signaling pathway, thereby affecting the chemoresistance mediated by adhesion in MM cells.


Assuntos
Quimiocina CXCL12/genética , Interleucina-6/genética , Mieloma Múltiplo/metabolismo , Receptores CXCR4/genética , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Fosfatidilinositol 3-Quinases/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética
11.
J Cell Biochem ; 120(10): 17791-17810, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264739

RESUMO

Chemoresistance often causes treatment failure of B-cell acute lymphoblastic leukemia (B-ALL). However, the mechanism remains unclear at present. Herein, overexpression of heme oxygenase-1 (HO-1) was found in the bone marrow stromal cells (BMSCs) from B-ALL patients developing resistance to vincristine (VCR), a chemotherapeutic agent. Two B-ALL cell lines Super B15 and CCRF-SB were cocultured with BMSCs transfected with lentivirus to regulate the expression of HO-1. Silencing HO-1 expression in BMSCs increased the apoptotic rates of B-ALL cell lines induced by VCR, whereas upregulating HO-1 expression reduced the rate. Cell cycle can be arrested in the G2/M phase by VCR. In contrast, B-ALL cells were arrested in the G0/G1 phase due to HO-1 overexpression in BMSCs, which avoided damage from the G2/M phase. Vascular endothelial growth factor (VEGF) in BMSCs, as a key factor in the microenvironment-associated chemoresistance, was also positively coexpressed with HO-1. VEGF secretion was markedly increased in BMSCs with HO-1 upregulation but decreased in BMSCs with HO-1 silencing. B-ALL cell lines became resistant to VCR when cultured with VEGF recombinant protein, so VEGF secretion induced by HO-1 expression may promote the VCR resistance of B-ALL cells. As to the molecular mechanism, the PI3K/AKT pathway mediated regulation of VEGF by HO-1. In conclusion, this study clarifies a mechanism by which B-ALL is induced to resist VCR through HO-1 overexpression in BMSCs, and provides a novel strategy for overcoming VCR resistance in clinical practice.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Heme Oxigenase-1/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vincristina/farmacologia , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Lentivirus/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
12.
Dev Growth Differ ; 61(2): 166-175, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30585307

RESUMO

In order to investigate the influence of calcium and strontium ion concentration on human bone marrow stromal cells and their differentiation to osteoblasts, different cell culture media have been used. Even though this study does not contain a bone substitute material, the reason for this study was the decrease of cation concentration by many biomaterials, due to induced apatite precipitation. As a consequence, the reduced calcium ion concentration is known to affect osteoblastic development. Therefore, the main focus was put on the question, whether an increased strontium concentration (in the range of mM) might be suitable to compensate the lack of calcium ions. The effect of solely strontium ions-with only calcium in the media resulting from fetal calf serum-was investigated. Commercially available calcium-free medium (modified α-MEM) was tested in comparison with media with varied calcium ion concentrations (0.9, 1.8, and 3.6 mM), or strontium ion concentration (0.4, 0.9, 1.8, and 3.6 mM). In case of calcium, higher concentrations cause increased proliferation, while differentiation was shifted to earlier points of time. Differentiation was increased by solely strontium ions only at 0.4-0.9 mM, while proliferation was highest for 0.9-1.8 mM. From these results, it can be concluded that strontium is able to compensate a lack of calcium to a certain degree. Thus, in contrast to calcium ion release, a strontium ion release from bone substitute materials might be applicable for stimulation of bone regeneration without influencing the media saturation.


Assuntos
Cálcio , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrôncio/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Íons/farmacologia , Relação Estrutura-Atividade
13.
Ultrastruct Pathol ; 43(2-3): 117-125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31137995

RESUMO

Hematopoietic microenvironments have been extensively studied, especially focusing on regulation of hematopoietic stem cells (HSCs) in HSC niche following progress of molecular biology in resent years. Based on prior morphological achievements from 1970s, the characteristics of cellular compartments and bone marrow stromal cells (BMSCs) were studied ultrastructurally in human and mice bone marrow in the present study. The samples, human bone marrow granules, were collected from bone marrow aspirations (BMAs) of 20 patients with hematocytopenia and isolated BMSCs were found undesignedly in nucleated cells of BMAs of the patients. Femoral bone marrow samples were collected from 6-week-old three sacrificed mice. Detailed images illustrated maturing hematopoietic cells harbored individually in honeycomb-like microenvironment constituted by BMSCs that shared of fibroblastic and histiocytic characteristics in hematopoietic microenvironments of human and mice bone marrow.


Assuntos
Medula Óssea/ultraestrutura , Células-Tronco Hematopoéticas/ultraestrutura , Células-Tronco Mesenquimais/ultraestrutura , Células Estromais/ultraestrutura , Animais , Células da Medula Óssea/ultraestrutura , Linhagem da Célula/fisiologia , Fibroblastos/ultraestrutura , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Camundongos
14.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137461

RESUMO

Phloretin has pleiotropic effects, including glucose transporter (GLUT) inhibition. We previously showed that phloretin promoted adipogenesis of bone marrow stromal cell (BMSC) line ST2 independently of GLUT1 inhibition. This study investigated the effect of phloretin on osteoblastogenesis of ST2 cells and osteoblastic MC3T3-E1 cells. Treatment with 10 to 100 µM phloretin suppressed mineralization and expression of osteoblast differentiation markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), type 1 collagen, runt-related transcription factor 2 (Runx2), and osterix (Osx), while increased adipogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid-binding protein 4, and adiponectin. Phloretin also inhibited mineralization and decreased osteoblast differentiation markers of MC3T3-E1 cells. Phloretin suppressed phosphorylation of Akt in ST2 cells. In addition, treatment with a phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor, LY294002, suppressed the mineralization and the expression of osteoblast differentiation markers other than ALP. GLUT1 silencing by siRNA did not affect mineralization, although it decreased the expression of OCN and increased the expression of ALP, Runx2, and Osx. The effects of GLUT1 silencing on osteoblast differentiation markers and mineralization were inconsistent with those of phloretin. Taken together, these findings suggest that phloretin suppressed osteoblastogenesis of ST2 and MC3T3-E1 cells by inhibiting the PI3K/Akt pathway, suggesting that the effects of phloretin may not be associated with glucose uptake inhibition.


Assuntos
Cálcio/metabolismo , Diferenciação Celular , Osteoblastos/efeitos dos fármacos , Floretina/farmacologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
J Cell Physiol ; 233(3): 2549-2559, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28786489

RESUMO

Bone marrow stromal cells (BMSCs) are multipotent cells that can differentiate into adipocytes and osteoblasts. Inadequate BMSC differentiation is occasionally implicated in chronic bone metabolic disorders. However, specific signaling pathways directing BMSC differentiation have not been elucidated. Here, we explored the roles of spleen tyrosine kinase (Syk) in BMSC differentiation into adipocytes and osteoblasts. We found that Syk phosphorylation was increased in the early stage, whereas its protein expression was gradually decreased during the adipogenic and osteogenic differentiation of two mouse mesenchymal stromal cell lines, ST2 and 10T(1/2), and a human BMSC line, UE6E-7-16. Syk inactivation with either a pharmacological inhibitor or Syk-specific siRNA suppressed adipogenic differentiation, characterized by decreased lipid droplet appearance and the gene expression of fatty acid protein 4 (Fabp4), peroxisome proliferator-activated receptor γ2 (Pparg2), CCAAT/enhancer binding proteins α (C/EBPα), and C/EBPß. In contrast, Syk inhibition promoted osteogenic differentiation, represented by increase in matrix mineralization and alkaline phosphatase (ALP) activity, as well as the expression levels of osteocalcin, runt-related transcription factor 2 (Runx2), and distal-less homeobox 5 (Dlx5) mRNAs. We also found that Syk-induced signals are mediated by phospholipase C γ1 (PLCγ1) in osteogenesis and PLCγ2 in adipogenesis. Notably, Syk-activated PLCγ2 signaling was partly modulated through B-cell linker protein (BLNK) in adipogenic differentiation. On the other hand, growth factor receptor-binding protein 2 (Grb2) was involved in Syk-PLCγ1 axis in osteogenic differentiation. Taken together, these results indicate that Syk-PLCγ signaling has a dual role in regulating the initial stage of adipogenic and osteogenic differentiation of BMSCs.


Assuntos
Adipócitos/enzimologia , Adipogenia , Linhagem da Célula , Células-Tronco Mesenquimais/enzimologia , Osteoblastos/enzimologia , Osteogênese , Fosfolipase C gama/metabolismo , Quinase Syk/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos Endogâmicos C3H , Fenótipo , Fosfolipase C gama/genética , Fosforilação , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Quinase Syk/genética , Fatores de Tempo , Transfecção
16.
Development ; 142(6): 1023-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25758217

RESUMO

Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored.


Assuntos
Osso e Ossos/citologia , Linhagem da Célula/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/fisiologia , Nicho de Células-Tronco , Adipócitos/citologia , Cartilagem/citologia , Humanos , Terminologia como Assunto
17.
Br J Nutr ; 117(5): 645-661, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28367764

RESUMO

Balance between adipocyte and osteoblast differentiation is the key link of disease progression in obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and adipocytes prompted us to analyse the effect of FNT on adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced obesity. The anti-obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT suppresses the adipogenic differentiation of 3T3-L1 fibroblasts, through down-regulation of key adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of ß-catenin were attributed to the anti-adipogenic action of FNT. In vivo, 12 weeks of FNT treatment inhibited the development of obesity in mice by attenuating HFD-induced body weight gain and visceral fat accumulation. The anti-obesity effect of FNT results from increased energy expenditure. FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT's rescuing action against obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased adipogenic potentials. Our findings suggest that FNT inhibits adipogenesis through AMPK/ß-catenin signal transduction pathways and protects against HFD-induced obesity and bone loss.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/efeitos dos fármacos , Isoflavonas/farmacologia , Obesidade/prevenção & controle , Osteoporose/prevenção & controle , beta Catenina/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Osteoporose/etiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1/genética , Regulação para Cima/efeitos dos fármacos
18.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143796

RESUMO

Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated ß-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34⁺ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.


Assuntos
Angelica sinensis , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Angelica sinensis/química , Angelica sinensis/metabolismo , Biomarcadores , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Fluoruracila/farmacologia , Humanos , Substâncias Protetoras , Espécies Reativas de Oxigênio/metabolismo
19.
Zhonghua Zhong Liu Za Zhi ; 39(12): 885-890, 2017 Dec 23.
Artigo em Zh | MEDLINE | ID: mdl-29262503

RESUMO

Objective: To investigate the influences of bone marrow stromal cells, components of extracellular matrix and cytokine secreted by stromal cells on the chemotherapeutic sensitivity of acute lymphoblastic leukemia cells to cytosine arabinoside (Ara-C). Methods: The co-culture model of acute lymphoblastic leukemia cell Sup-B15 and bone marrow stromal cell OP9 was constructed. Sup-B15 cells were cultured alone or co-cultured with OP9 cells, inactivated OP9 cells, the conditional medium (CM) of co-cultured OP9 cells and Sup-B15 cells, the CM of OP9 cells alone or Sup-B15 cells alone, respectively. The effects of different concentrations of Ara-C on the proliferation of each Sup-B1 cell group mentioned above were detected by cell counting kit-8 (CCK-8) method. The effects of different concentrations of Ara-C on the apoptosis of each group were detected by flow cytometry (FCM). The expressions of Bcl-2 protein in each group were detected by western blot. Results: The results of CCK-8 test showed that the inhibitory efficiency of Ara-C was in a dose-dependent manner. With different concentrations of Ara-C treatment for 48 hours, the half maximal inhibitory concentrations (IC(50)) of Sup-B15 and OP9 co-cultured group, Sup-B15 and inactivated OP9 co-cultured group were 0.510 and 0.339 µg/ml, respectively, significantly higher than 0.091 µg/ml of Sup-B15 cultured alone group (P<0.05). The IC(50) of CM of Sup-B15 and OP9 co-cultured group was 0.204 µg/ml, significantly higher than 0.087 µg/ml of the CM of OP9 cultured alone group (P<0.05) and 0.097 µg/ml of the CM of Sup-B15 cultured alone group (P<0.05). The results of flow cytometry showed that with 0.10 µg/ml Ara-C treatment for 24 hours, the early apoptotic cell percentages of Sup-B15 and OP9 co-cultured group, Sup-B15 and inactivated OP9 co-cultured group and Sup-B15 cultured alone group were (6.67±2.19) %, (8.95±3.04) % and (20.46±2.63) %, respectively. The early apoptotic cell percentages of Sup-B15 and OP9 co-cultured group, Sup-B15 and inactivated OP9 co-cultured group were significantly lower than that of Sup-B15 cultured alone group (P<0.05). The early apoptotic cell percentages of the CM of Sup-B15 and OP9 co-cultured group, the CM of OP9 cultured alone group and the CM of Sup-B15 cultured alone group were (11.16±2.97)%, (22.08±2.71)% and (19.25±1.57)%, respectively, the former two of which were significantly lower than the last one (P<0.05). The results of western blot showed that the relative expression levels of Bcl-2 protein of Sup-B15 cultured alone group, Sup-B15 and OP9 co-cultured group, Sup-B15 and inactivated OP9 co-cultured group, the CM of Sup-B15 and OP9 co-cultured group, the CM of OP9 cultured alone group and the CM of Sup-B15 cultured alone group were 1.00±0.00, 1.53±0.03, 1.38±0.01, 1.26±0.05, 1.03±0.01 and 0.98±0.02, respectively. The expression levels of bcl-2 protein of three combined groups were significantly higher than that of Sup-B15 cultured alone group (P<0.05). while no statistically significant difference was observed between the CM of OP9 cultured alone group and the CM of Sup-B15 cultured alone group (P>0.05). Conclusion: Bone marrow stromal cell OP9, the components of bone marrow extracellular matrix and cytokine secreted by stromal cells are involved in the induction of the chemotherapeutic resistance of Sup-B15 cells to Ara-C.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Células da Medula Óssea/metabolismo , Citarabina/farmacologia , Citocinas/metabolismo , Citocinas/fisiologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Mesenquimais/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Apoptose , Contagem de Células , Linhagem Celular Tumoral , Técnicas de Cocultura , Meios de Cultivo Condicionados , Humanos , Proteínas Proto-Oncogênicas c-bcl-2
20.
Biochim Biophys Acta ; 1853(2): 338-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450979

RESUMO

As the second most prevalent hematologic malignancy, multiple myeloma (MM) remains incurable and relapses due to intrinsic or acquired drug resistance. Therefore, new therapeutic strategies that target molecular mechanisms responsible for drug resistance are attractive. Interactions of tumor cells with their surrounding microenvironment impact tumor initiation, progression and metastasis, as well as patient prognosis. This cross-talk is bidirectional. Tumor cells can also attract or activate tumor-associated stromal cells by releasing cytokines to facilitate their growth, invasion and metastasis. The effect of myeloma cells on bone marrow stromal cells (BMSCs) has not been well studied. In our study, we found that higher stiffness of BMSCs was not a unique characteristic of BMSCs from MM patients (M-BMSCs). BMSCs from MGUS (monoclonal gammopathy of undetermined significance) patients were also stiffer than the BMSCs from healthy volunteers (N-BMSCs). The stiffness of M-BMSCs was enhanced when cocultured with myeloma cells. In contrast, no changes were seen in myeloma cell-primed MGUS- and N-BMSCs. Interestingly, our data indicated that CD138⁻ myeloma cells, but not CD138⁺ cells, regulated M-BMSC stiffness. SDF-1 was highly expressed in the CD138⁻ myeloma subpopulation compared with that in CD138⁺ cells. Inhibition of SDF-1 using AMD3100 or knocking-down CXCR4 in M-BMSCs blocked CD138⁻ myeloma cells-induced increase in M-BMSC stiffness, suggesting a crucial role of SDF-1/CXCR4. AKT inhibition attenuated SDF-1-induced increases in M-BMSC stiffness. These findings demonstrate, for the first time, CD138⁻ myeloma cell-directed cross-talk with BMSCs and reveal that CD138⁻ myeloma cells regulate M-BMSC stiffness through SDF-1/CXCR4/AKT signaling.


Assuntos
Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Sindecana-1/metabolismo , Fenômenos Biomecânicos , Ativação Enzimática/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/patologia , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA