Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Virol ; 97(11): e0085023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37943040

RESUMO

IMPORTANCE: Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.


Assuntos
Bacteriófagos , Burkholderia , Terapia por Fagos , Humanos , Antibacterianos , Bacteriófagos/genética , Burkholderia/virologia , Especificidade de Hospedeiro , Fibrose Cística/microbiologia , Infecções por Burkholderia/terapia
2.
Arch Microbiol ; 206(4): 159, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483625

RESUMO

Burkholderia cepacia complex (BCC) is a Gram-negative, non-spore-forming bacterium with more than 20 opportunistic pathogenic species, most commonly found in soil and water. Due to their rapid mutation rates, these organisms are adaptable and possess high genomic plasticity. BCC can cause life-threatening infections in immunocompromised individuals, such as those with cystic fibrosis, chronic granulomatous disease, and neonates. BCC contamination is a significant concern in pharmaceutical manufacturing, frequently causing non-sterile product recalls. BCC has been found in purified water, cosmetics, household items, and even ultrasound gel used in veterinary practices. Pharmaceuticals, personal care products, and cleaning solutions have been implicated in numerous outbreaks worldwide, highlighting the risks associated with intrinsic manufacturing site contamination. Regulatory compliance, product safety, and human health protection depend on testing for BCC in pharmaceutical manufacturing. Identification challenges exist, with BCC often misidentified as other bacteria like non-lactose fermenting Escherichia coli or Pseudomonas spp., particularly in developing countries where reporting BCC in pharmaceuticals remains limited. This review comprehensively aims to address the organisms causing BCC contamination, genetic diversity, identification challenges, regulatory requirements, and mitigation strategies. Recommendations are proposed to aid pharmaceutical chemists in managing BCC-associated risks and implementing prevention strategies within manufacturing processes.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Fibrose Cística , Recém-Nascido , Humanos , Complexo Burkholderia cepacia/genética , Infecções por Burkholderia/prevenção & controle , Infecções por Burkholderia/complicações , Infecções por Burkholderia/epidemiologia , Fibrose Cística/microbiologia , Água , Preparações Farmacêuticas
3.
Eur J Clin Microbiol Infect Dis ; 43(7): 1349-1353, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780755

RESUMO

INTRODUCTION: Burkholderia cepacia complex (BCC) are non-fermenting Gram-negative bacteria that can chronically colonize the lungs of people with cystic fibrosis (pwCF), causing a severe and progressive respiratory failure, post-transplant complications and epidemic outbreaks. Therefore, rapid and accurate identification of these bacteria is relevant for pwCF, in order to facilitate early eradication and prevent chronic colonization. However, BCCs are often quite difficult to detect on culture media as they have a slow growth rate and can be hidden by other fast-growing microorganisms, including Pseudomonas aeruginosa and filamentous fungi. MATERIAL AND METHODS: We evaluated the sensitivity of CHROMagar™ B. cepacia agar using 11 isolates from a well-characterized BCC collection, using BCA agar (Oxoid, UK) as a gold standard. We also studied 180 clinical sputum samples to calculate positive (PPV) and negative (NPV) predictive values. Furthermore, we used three of the well-characterized BCC isolates to determine the limit of detection (LOD). RESULTS: Eleven isolates grew on CHROMagar™ B. cepacia at 37ºC after 48 h. The NPV and PPV of CHROMagar™ B. cepacia were 100% and 87.5%, respectively. The LOD of CHROMagar™ B. cepacia was around 1 × 103 CFU/ml, requiring a ten-fold dilution lower bacterial load than BCA for BCC detection. CONCLUSION: CHROMagar™ B. cepacia agar proved to have a very good sensitivity and specificity for the detection of clinical BCCs. Moreover, the chromogenic nature of the medium allowed us to clearly differentiate BCC from other Gram-negative species, filamentous fungi and yeasts, thereby facilitating the identification of contaminants.


Assuntos
Ágar , Técnicas Bacteriológicas , Infecções por Burkholderia , Complexo Burkholderia cepacia , Meios de Cultura , Fibrose Cística , Sensibilidade e Especificidade , Escarro , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Complexo Burkholderia cepacia/isolamento & purificação , Complexo Burkholderia cepacia/classificação , Escarro/microbiologia , Infecções por Burkholderia/microbiologia , Infecções por Burkholderia/diagnóstico , Meios de Cultura/química , Técnicas Bacteriológicas/métodos
4.
Appl Microbiol Biotechnol ; 108(1): 280, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563885

RESUMO

Small non-coding RNAs (sRNAs) are key regulators of post-transcriptional gene expression in bacteria. Hundreds of sRNAs have been found using in silico genome analysis and experimentally based approaches in bacteria of the Burkholderia cepacia complex (Bcc). However, and despite the hundreds of sRNAs identified so far, the number of functionally characterized sRNAs from these bacteria remains very limited. In this mini-review, we describe the general characteristics of sRNAs and the main mechanisms involved in their action as regulators of post-transcriptional gene expression, as well as the work done so far in the identification and characterization of sRNAs from Bcc. The number of functionally characterized sRNAs from Bcc is expected to increase and to add new knowledge on the biology of these bacteria, leading to novel therapeutic approaches to tackle the infections caused by these opportunistic pathogens, particularly severe among cystic fibrosis patients. KEY POINTS: •Hundreds of sRNAs have been identified in Burkholderia cepacia complex bacteria (Bcc). •A few sRNAs have been functionally characterized in Bcc. •Functionally characterized Bcc sRNAs play major roles in metabolism, biofilm formation, and virulence.


Assuntos
Complexo Burkholderia cepacia , Fibrose Cística , Humanos , Bactérias , Complexo Burkholderia cepacia/genética , Virulência
5.
J Bacteriol ; 205(10): e0019623, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37791751

RESUMO

Antibiotic resistance in bacteria is a growing global concern and has spurred increasing efforts to find alternative therapeutics, such as the use of bacterial viruses, or bacteriophages. One promising approach is to use phages that not only kill pathogenic bacteria but also select phage-resistant survivors that are newly sensitized to traditional antibiotics, in a process called "phage steering." Members of the bacterial genus Burkholderia, which includes various human pathogens, are highly resistant to most antimicrobial agents, including serum immune components, antimicrobial peptides, and polymixin-class antibiotics. However, the application of phages in combination with certain antibiotics can produce synergistic effects that more effectively kill pathogenic bacteria. Herein, we demonstrate that Burkholderia cenocepacia serum resistance is due to intact lipopolysaccharide (LPS) and membranes, and phage-induced resistance altering LPS structure can enhance bacterial sensitivity not only to immune components in serum but also to membrane-associated antibiotics such as colistin. IMPORTANCE Bacteria frequently encounter selection pressure from both antibiotics and lytic phages, but little is known about the interactions between antibiotics and phages. This study provides new insights into the evolutionary trade-offs between phage resistance and antibiotic sensitivity. The creation of phage resistance through changes in membrane structure or lipopolysaccharide composition can simultaneously be a major cause of antibiotic sensitivity. Our results provide evidence of synergistic therapeutic efficacy in phage-antibiotic interactions and have implications for the future clinical use of phage steering in phage therapy applications.


Assuntos
Bacteriófagos , Burkholderia cenocepacia , Humanos , Antibacterianos/farmacologia , Lipopolissacarídeos , Virulência
6.
Proteins ; 91(6): 724-738, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36601892

RESUMO

The study aimed to screen prospective molecular targets of BCC and potential natural lead candidates as effective binders by computational modeling, molecular docking, and dynamic (MD) simulation studies. Based on the virulent functions, tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein (mnmC) and pyrimidine/purine nucleoside phosphorylase (ppnP) were selected as the prospective molecular targets. In the absence of experimental data, the three-dimensional (3D) structures of these targets were computationally predicted. After a thorough literature survey and database search, the drug-likeness, and pharmacokinetic properties of 70 natural molecules were computationally predicted and the effectual binding of the best lead molecules against both the targets was predicted by molecular docking. The stabilities of the best-docked complexes were validated by MD simulation and the binding energy calculations were carried out by MM-GBSA approaches. The present study revealed that the hypothetical models of mnmC and ppnP showed stereochemical accuracy. The study also showed that among 70 natural compounds subjected to computational screening, Honokiol (3',5-Di(prop-2-en-1-yl) [1,1'-biphenyl]-2,4'-diol) present in Magnolia showed ideal drug-likeness, pharmacokinetic features and showed effectual binding with mnmC and ppnP (binding energies -7.3 kcal/mol and -6.6 kcal/mol, respectively). The MD simulation and GBSA calculation studies showed that the ligand-protein complexes stabilized throughout tMD simulation. The present study suggests that Honokiol can be used as a potential lead molecule against mnmC and ppnP targets of BCC and this study provides insight into further experimental validation for alternative lead development against drug resistant BCC.


Assuntos
Complexo Burkholderia cepacia , Simulação de Acoplamento Molecular , Compostos de Bifenilo , Simulação de Dinâmica Molecular
7.
Mol Microbiol ; 117(6): 1384-1404, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510686

RESUMO

Bacterial opportunistic pathogens make diverse secondary metabolites both in the natural environment and when causing infections, yet how these molecules mediate microbial interactions and their consequences for antibiotic treatment are still poorly understood. Here, we explore the role of three redox-active secondary metabolites, pyocyanin, phenazine-1-carboxylic acid, and toxoflavin, as interspecies modulators of antibiotic resilience. We find that these molecules dramatically change susceptibility levels of diverse bacteria to clinical antibiotics. Pyocyanin and phenazine-1-carboxylic acid are made by Pseudomonas aeruginosa, while toxoflavin is made by Burkholderia gladioli, organisms that infect cystic fibrosis and other immunocompromised patients. All molecules alter the susceptibility profile of pathogenic species within the "Burkholderia cepacia complex" to different antibiotics, either antagonizing or potentiating their effects, depending on the drug's class. Defense responses regulated by the redox-sensitive transcription factor SoxR potentiate the antagonistic effects these metabolites have against fluoroquinolones, and the presence of genes encoding SoxR and the efflux systems it regulates can be used to predict how these metabolites will affect antibiotic susceptibility of different bacteria. Finally, we demonstrate that inclusion of secondary metabolites in standard protocols used to assess antibiotic resistance can dramatically alter the results, motivating the development of new tests for more accurate clinical assessment.


Assuntos
Antibacterianos , Complexo Burkholderia cepacia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/metabolismo , Humanos , Fenazinas/metabolismo , Fenazinas/farmacologia , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Pirimidinonas , Triazinas
8.
Antimicrob Agents Chemother ; 67(12): e0034623, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37971240

RESUMO

Achromobacter spp. and Burkholderia cepacia complex (Bcc) are rare but diverse opportunistic pathogens associated with serious infections, which are often multidrug resistant. This study compared the in vitro antibacterial activity of the siderophore antibiotic cefiderocol against Achromobacter spp. and Bcc isolates with that of other approved antibacterial drugs, including ceftazidime-avibactam, ciprofloxacin, colistin, imipenem-relebactam, and meropenem-vaborbactam. Isolates were collected in the SIDERO multinational surveillance program. Among 334 Achromobacter spp. isolates [76.6% from respiratory tract infections (RTIs)], cefiderocol had minimum inhibitory concentration (MIC)50/90 of 0.06/0.5 µg/mL overall and 0.5/4 µg/mL against 52 (15.6%) carbapenem-non-susceptible (Carb-NS) isolates. Eleven (3.3%) Achromobacter spp. isolates overall and 6 (11.5%) Carb-NS isolates were not susceptible to cefiderocol. Among 425 Bcc isolates (73.4% from RTIs), cefiderocol had MIC50/90 of ≤0.03/0.5 µg/mL overall and ≤0.03/1 µg/mL against 184 (43.3%) Carb-NS isolates. Twenty-two (5.2%) Bcc isolates overall and 13 (7.1%) Carb-NS isolates were not susceptible to cefiderocol. Cumulative MIC distributions showed cefiderocol to be the most active of the agents tested in vitro against both Achromobacter spp. and Bcc. In a neutropenic murine lung infection model and a humanized pharmacokinetic immunocompetent rat lung infection model, cefiderocol showed significant bactericidal activity against two meropenem-resistant Achromobacter xylosoxidans strains compared with untreated controls (P < 0.05) and vehicle-treated controls (P < 0.05), respectively. Meropenem, piperacillin-tazobactam, ceftazidime, and ciprofloxacin comparators showed no significant activity in these models. The results suggest that cefiderocol could be a possible treatment option for RTIs caused by Achromobacter spp. and Bcc.


Assuntos
Achromobacter , Complexo Burkholderia cepacia , Infecções Respiratórias , Ratos , Animais , Camundongos , Cefiderocol , Meropeném/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/farmacologia , Infecções Respiratórias/tratamento farmacológico , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana
9.
Mol Divers ; 27(6): 2823-2847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36567421

RESUMO

Burkholderia cepacia complex (BCC) is a group of gram-negative bacteria composed of at least 20 different species that cause diseases in plants, animals as well as humans (cystic fibrosis and airway infection). Here, we analyzed the proteomic data of 47 BCC strains by classifying them in three groups. Phylogenetic analyses were performed followed by individual core region identification for each group. Comparative analysis of the three individual core protein fractions resulted in 1766 ortholog/proteins. Non-human homologous proteins from the core region gave 1680 proteins. Essential protein analyses reduced the target list to 37 proteins, which were further compared to a closely related out-group, Burkholderia gladioli ATCC 10,248 strain, resulting in 21 proteins. 3D structure modeling, validation, and druggability step gave six targets that were subjected to further target prioritization parameters which ultimately resulted in two BCC targets. A library of 12,000 ZINC drug-like compounds was screened, where only the top hits were selected for docking orientations. These included ZINC01405842 (against Chorismate synthase aroC) and ZINC06055530 (against Bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/Glucosamine-1-phosphate acetyltransferase glmU). Finally, dynamics simulation (200 ns) was performed for each ligand-receptor complex, followed by ADMET profiling. Of these targets, details of their applicability as drug targets have not yet been elucidated experimentally, hence making our predictions novel and it is suggested that further wet-lab experimentations should be conducted to test the identified BCC targets and ZINC scaffolds to inhibit them.


Assuntos
Complexo Burkholderia cepacia , Animais , Complexo Burkholderia cepacia/genética , Filogenia , Proteômica , Análise de Sequência , Zinco
10.
Genomics ; 114(1): 398-408, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780935

RESUMO

Here the pangenome analysis of Burkholderia sensu lato (s.l.) was performed for the first time, together with an updated analysis of the pangenome of Burkholderia sensu stricto, and Burkholderia cepacia complex (Bcc) focusing on the Bcc B. catarinensis specific features of its re-sequenced genome. The pangenome of Burkholderia s.l., Burkholderia s.s., and of the Bcc was open, composed of more than 96% of accessory genes, and more than 62% of unknown genes. Functional annotations showed that secondary metabolism genes belonged to the variable portion of genomes, which might explain their production of several compounds with varied bioactivities. Taken together, this work showed the great variability and uniqueness of these genomes and revealed an underexplored unknown potential in poorly characterized genes. Regarding B. catarinensis 89T, its genome harbors genes related to hydrolases production and plant growth promotion. This draft genome will be valuable for further investigation of its biotechnological potentials.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Burkholderia/genética , Complexo Burkholderia cepacia/genética , Complexo Burkholderia cepacia/metabolismo
11.
Emerg Infect Dis ; 28(2): 323-330, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906288

RESUMO

During March 2016-January 2019, Burkholderia cepacia complex (BCC) infection developed in 13 persons who inject drugs (PWID) in Kowloon West Region, Hong Kong, China. Seven cases were infective spondylitis, 2 endocarditis, 2 septic arthritis, 1 intramuscular abscess and bacteremia, and 1 necrotizing fasciitis. Pulsed-field gel electrophoresis revealed that the isolates from 9 patients were clonally related. This clone caused major illness, and 11 of the 13 patients required surgical treatment. Clinicians should be aware of this pathogen and the appropriate broad-spectrum antimicrobial drugs to empirically prescribe for PWID with this life-threatening infection. Close collaboration among public health authorities, outreach social workers, and methadone clinics is essential for timely prevention and control of outbreaks in the PWID population.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Infecção Hospitalar , Usuários de Drogas , Abuso de Substâncias por Via Intravenosa , Infecções por Burkholderia/epidemiologia , China/epidemiologia , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Eletroforese em Gel de Campo Pulsado , Hong Kong/epidemiologia , Humanos , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/epidemiologia
12.
Cell Microbiol ; 23(8): e13340, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33822465

RESUMO

Trimeric Autotransporter Adhesins (TAA) found in Gram-negative bacteria play a key role in virulence. This is the case of Burkholderia cepacia complex (Bcc), a group of related bacteria able to cause infections in patients with cystic fibrosis. These bacteria use TAAs, among other virulence factors, to bind to host protein receptors and their carbohydrate ligands. Blocking such contacts is an attractive approach to inhibit Bcc infections. In this study, using an antibody produced against the TAA BCAM2418 from the epidemic strain Burkholderia cenocepacia K56-2, we were able to uncover its roles as an adhesin and the type of host glycan structures that serve as recognition targets. The neutralisation of BCAM2418 was found to cause a reduction in the adhesion of the bacteria to bronchial cells and mucins. Moreover, in vivo studies have shown that the anti-BCAM2418 antibody exerted an inhibitory effect during infection in Galleria mellonella. Finally, inferred by glycan arrays, we were able to predict for the first time, host glycan epitopes for a TAA. We show that BCAM2418 favoured binding to 3'sialyl-3-fucosyllactose, histo-blood group A, α-(1,2)-linked Fuc-containing structures, Lewis structures and GM1 gangliosides. In addition, the glycan microarrays demonstrated similar specificities of Burkholderia species for their most intensely binding carbohydrates.


Assuntos
Infecções por Burkholderia , Burkholderia cenocepacia , Adesinas Bacterianas , Aderência Bacteriana , Humanos , Polissacarídeos
13.
Arch Microbiol ; 204(3): 178, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35174425

RESUMO

Genome analysis of strains placed in the NCBI genome database as Burkholderia cenocepacia defined nine genomic species groups. The largest group (259 strains) corresponds to B. cenocepacia and the second largest group (58 strains) was identified as "Burkholderia servocepacia", a Burkholderia species classification which has not been validly published. The publication of "B. servocepacia" did not comply with Rule 27 and Recommendation 30 from the International Code of Nomenclature of Prokaryotes (ICNP) and have errors in the type strain name and the protologue describing the novel species. Here, we correct the position of this species by showing essential information that meets the criteria defined by ICNP. After additional analysis complying with taxonomic criteria, we propose that the invalid "B. servocepacia" be renamed as Burkholderia orbicola sp. nov. The original study proposing "B. servocepacia" was misleading, because this name derives from the Latin "servo" meaning "to protect/watch over", and the authors proposed this based on the beneficial biocontrol properties of several strains within the group. However, it is clear that "B. servocepacia" isolates are capable of opportunistic infection, and the proposed name Burkholderia orbicola sp. nov. takes into account these diverse phenotypic traits. The type strain is TAtl-371 T (= LMG 30279 T = CM-CNRG 715 T).


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Complexo Burkholderia cepacia/genética , DNA Bacteriano/genética , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Epidemiol Infect ; 150: e154, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35923078

RESUMO

In March 2018, the US Food and Drug Administration (FDA), US Centers for Disease Control and Prevention, California Department of Public Health, Los Angeles County Department of Public Health and Pennsylvania Department of Health initiated an investigation of an outbreak of Burkholderia cepacia complex (Bcc) infections. Sixty infections were identified in California, New Jersey, Pennsylvania, Maine, Nevada and Ohio. The infections were linked to a no-rinse cleansing foam product (NRCFP), produced by Manufacturer A, used for skin care of patients in healthcare settings. FDA inspected Manufacturer A's production facility (manufacturing site of over-the-counter drugs and cosmetics), reviewed production records and collected product and environmental samples for analysis. FDA's inspection found poor manufacturing practices. Analysis by pulsed-field gel electrophoresis confirmed a match between NRCFP samples and clinical isolates. Manufacturer A conducted extensive recalls, FDA issued a warning letter citing the manufacturer's inadequate manufacturing practices, and federal, state and local partners issued public communications to advise patients, pharmacies, other healthcare providers and healthcare facilities to stop using the recalled NRCFP. This investigation highlighted the importance of following appropriate manufacturing practices to minimize microbial contamination of cosmetic products, especially if intended for use in healthcare settings.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Infecção Hospitalar , Aerossóis , Infecções por Burkholderia/epidemiologia , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Eletroforese em Gel de Campo Pulsado , Humanos , Estados Unidos/epidemiologia
15.
Clin Microbiol Rev ; 33(3)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32295766

RESUMO

Burkholderia cepacia (formerly Pseudomonas cepacia) was once thought to be a single bacterial species but has expanded to the Burkholderia cepacia complex (Bcc), comprising 24 closely related opportunistic pathogenic species. These bacteria have a widespread environmental distribution, an extraordinary metabolic versatility, a complex genome with three chromosomes, and a high capacity for rapid mutation and adaptation. Additionally, they present an inherent resistance to antibiotics and antiseptics, as well as the abilities to survive under nutrient-limited conditions and to metabolize the organic matter present in oligotrophic aquatic environments, even using certain antimicrobials as carbon sources. These traits constitute the reason that Bcc bacteria are considered feared contaminants of aqueous pharmaceutical and personal care products and the frequent reason behind nonsterile product recalls. Contamination with Bcc has caused numerous nosocomial outbreaks in health care facilities, presenting a health threat, particularly for patients with cystic fibrosis and chronic granulomatous disease and for immunocompromised individuals. This review addresses the role of Bcc bacteria as a potential public health problem, the mechanisms behind their success as contaminants of pharmaceutical products, particularly in the presence of biocides, the difficulties encountered in their detection, and the preventive measures applied during manufacturing processes to control contamination with these objectionable microorganisms. A summary of Bcc-related outbreaks in different clinical settings, due to contamination of diverse types of pharmaceutical products, is provided.


Assuntos
Complexo Burkholderia cepacia/fisiologia , Contaminação de Medicamentos , Microbiologia da Água , Infecções por Burkholderia/microbiologia , Infecção Hospitalar/microbiologia , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla , Humanos , Infecções Oportunistas/microbiologia
16.
Appl Environ Microbiol ; 87(22): e0116921, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34524894

RESUMO

Burkholderia cepacia complex strain R-12632 produces ditropolonyl sulfide, an unusual sulfur-containing tropone, via a yet-unknown biosynthetic pathway. Ditropolonyl sulfide purified from a culture of strain R-12632 inhibits the growth of various Gram-positive and Gram-negative resistant bacteria, with MIC values as low as 16 µg/ml. In the present study, we used a transposon mutagenesis approach combined with metabolite analyses to identify the genetic basis for antibacterial activity of strain R-12632 against Gram-negative bacterial pathogens. Fifteen of the 8304 transposon mutants investigated completely lost antibacterial activity against Klebsiella pneumoniae LMG 2095. In these loss-of-activity mutants, nine genes were interrupted. Four of those genes were involved in assimilatory sulfate reduction, two were involved in phenylacetic acid (PAA) catabolism, and one was involved in glutathione metabolism. Via semipreparative fractionation and metabolite identification, it was confirmed that inactivation of the PAA degradation pathway or glutathione metabolism led to loss of ditropolonyl sulfide production. Based on earlier studies on the biosynthesis of tropolone compounds, the requirement for a functional PAA catabolic pathway for antibacterial activity in strain R-12632 indicated that this pathway likely provides the tropolone backbone for ditropolonyl sulfide. Loss of activity observed in mutants defective in assimilatory sulfate reduction and glutathione biosynthesis suggested that cysteine and glutathione are potential sources of the sulfur atom linking the two tropolone moieties. The demonstrated antibacterial activity of the unusual antibacterial compound ditropolonyl sulfide warrants further studies into its biosynthesis and biological role. IMPORTANCEBurkholderia bacteria are historically known for their biocontrol properties and have been proposed as a promising and underexplored source of bioactive specialized metabolites. Burkholderia cepacia complex strain R-12632 inhibits various Gram-positive and Gram-negative resistant pathogens and produces numerous specialized metabolites, among which is ditropolonyl sulfide. This unusual antimicrobial has been poorly studied and its biosynthetic pathway remains unknown. In the present study, we performed transposon mutagenesis of strain R-12632 and performed genome and metabolite analyses of loss-of-activity mutants to study the genetic basis for antibacterial activity. Our results indicate that phenylacetic acid catabolism, assimilatory sulfate reduction, and glutathione metabolism are necessary for ditropolonyl sulfide production. These findings contribute to understanding of the biosynthesis and biological role of this unusual antimicrobial.


Assuntos
Antibacterianos/biossíntese , Complexo Burkholderia cepacia , Sulfetos/metabolismo , Tropolona/metabolismo , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/metabolismo , Glutationa/metabolismo , Sulfatos/metabolismo , Sulfetos/farmacologia , Tropolona/farmacologia
17.
Int Microbiol ; 24(2): 157-167, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33184776

RESUMO

Burkholderia cepacia complex (Bcc) members have clinical relevance as opportunistic pathogens in patients with cystic fibrosis and are responsible of numerous nosocomial infections. These closely related bacteria are also reported as frequent contaminants of industrial products. In this retrospective study, we use PCR and recA gene sequence analysis to identify at species level Bcc isolates recovered from massive consumption products and industrial processes in Argentina during the last 25 years. The sequences obtained were also compared with recA sequences from clinical Bcc isolates deposited in GenBank database. We detected Bcc in purified water and preserved products from pharmaceutics, cosmetics, household cleaning articles, and beverages industries. B. contaminans (which is prevalent among people with cystic fibrosis in Argentina) was the most frequent Bcc species identified (42% of the Bcc isolates studied). B. cepacia (10%), B. cenocepacia (5%), B. vietnamiensis (16%), B. arboris (3%), and the recently defined B. aenigmatica (24%) were also detected. Rec A sequences from all B. cepacia and most B. contaminans industrial isolates obtained in this study displayed 100% identity with recA sequences from isolates infecting Argentinean patients. This information brings evidence for considering industrial massive consumption products as a potential source of Bcc infections. In addition, identification at species level in industrial microbiological laboratories is necessary for a better epidemiological surveillance. Particularly in Argentina, more studies are required in order to reveal the role of these products in the acquisition of B. contaminans infections.


Assuntos
Bebidas/microbiologia , Complexo Burkholderia cepacia/isolamento & purificação , Contaminação de Alimentos/análise , Alimentos em Conserva/microbiologia , Argentina , Proteínas de Bactérias/genética , Complexo Burkholderia cepacia/classificação , Complexo Burkholderia cepacia/genética , Cosméticos/análise , Detergentes/análise , Filogenia , Reação em Cadeia da Polimerase , Recombinases Rec A/genética , Estudos Retrospectivos
18.
Emerg Infect Dis ; 26(9): 1987-1997, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32818396

RESUMO

Whether Burkholderia cepacia complex should be an objectionable organism in antiseptic solutions with acceptable total bacterial counts is controversial. By using next-generation sequencing, we documented a polyclonal B. cepacia complex outbreak affecting peritoneal dialysis patients in Hong Kong that was caused by contaminated chlorhexidine solutions. Epidemiologic investigations at a manufacturing site identified a semiautomated packaging machine as the probable source of contamination in some of the brands. Use of whole-genome sequencing differentiated the isolates into 3 brand-specific clonal types. Changes in exit site care recommendations, rapid recall of affected products, and tightening of regulatory control for chlorhexidine-containing skin antiseptics could prevent future similar outbreaks. Environmental opportunistic pathogens, including B. cepacia complex, might be included in regular surveillance as indicator organisms for monitoring environmental contamination.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Infecção Hospitalar , Diálise Peritoneal , Infecções por Burkholderia/epidemiologia , Complexo Burkholderia cepacia/genética , Clorexidina , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Hong Kong , Humanos
19.
Eur J Clin Microbiol Infect Dis ; 39(11): 2057-2064, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32583228

RESUMO

Burkholderia cepacia complex (BCC) is an emerging pathogen of nosocomial infection in chronic or critically ill patients without cystic fibrosis (CF). The objective was to evaluate the management and outcomes of BCC bacteremia in patients without CF. We conducted a retrospective study of non-CF adult patients with BCC bacteremia between January 1997 and December 2016 at 4 tertiary hospitals in South Korea. A total of 216 non-CF patients with BCC bacteremia were identified. Most cases were hospital-acquired (79.2%), and the most common source was a central venous catheter (CVC) (42.1%). The rates of susceptibility to trimethoprim-sulfamethoxazole and piperacillin-tazobactam of BCC isolates were high as 92.8% and 90.3%, respectively. The rates of susceptibility to ceftazidime, meropenem, and levofloxacin were 75.5%, 72.3%, and 64.1%, respectively. The 14-day, 30-day, and in-hospital mortality rate was 19.4%, 23.1%, and 31.0%, respectively. Female (OR = 3.1; 95% CI, 1.4-6.8), liver cirrhosis (OR = 6.2; 95% CI, 1.6-16.6), septic shock (OR = 11.2; 95% CI, 5.1-24.8), and catheter-related infection (OR = 2.6, 95% CI, 1.2-5.8) were the independent risk factors for 30-day mortality. The outcome did not differ according to type of antibiotics used. Among 91 patients with CVC-related BCC bacteremia, delayed CVC removal (> 3 days) had a higher rate of persistent bacteremia (54.5 vs. 26.1%; P = 0.03) and lower rate of clinical response (49.0 vs. 71.9%; P = 0.04), compared with early CVC removal (within 3 days). BCC bacteremia occurring in non-CF patients was mostly hospital-acquired and CVC-related. Early removal of the catheter is crucial in treatment of CVC-related BCC bacteremia.


Assuntos
Bacteriemia/epidemiologia , Infecções por Burkholderia/epidemiologia , Complexo Burkholderia cepacia/isolamento & purificação , Infecções Relacionadas a Cateter/epidemiologia , Fibrose Cística , Idoso , Bacteriemia/tratamento farmacológico , Infecções por Burkholderia/tratamento farmacológico , Infecções por Burkholderia/etiologia , Complexo Burkholderia cepacia/efeitos dos fármacos , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/etiologia , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Estudos Retrospectivos , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico
20.
Indian J Med Res ; 152(6): 656-661, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34145106

RESUMO

BACKGROUND & OBJECTIVES: With increased isolation of Burkholderia cepacia complex (Bcc) and Stenotrophomonas maltophilia from clinical specimens, knowledge of their antimicrobial susceptibility trend will aid in better patient management. This study provides a comprehensive picture of this trend over a decade. METHODS: A retrospective analysis of laboratory records over 10 years for antimicrobial susceptibility pattern of Bcc and S. maltophilia was carried out. The susceptibility pattern to commonly used antimicrobials was determined using disk diffusion and compared at the beginning, mid and end of the study period. RESULTS: Five hundred and thirty Bcc and 665 S. maltophilia isolated over the past 10 yr were included in the study. Over the years, susceptibility of Bcc for co-trimoxazole varied as 80, 70 and 89 per cent at the beginning, middle and end of the study, respectively. Susceptibility to tetracycline was 43 per cent at the beginning of the study and that to minocycline was 100 per cent mid-study and 74 per cent at the end. Susceptibility to ceftazidime varied as 83, 60 and 65 per cent, respectively, and to meropenem, increased during the first half of the study and decreased in the second half, as 60, 70 and 43 per cent, respectively. Bcc susceptibility to levofloxacin decreased from 84 (in 2014) to 76 per cent (in 2016). S. maltophilia susceptibility to co-trimoxazole varied as 90, 82 and 87 per cent, respectively, whereas that to levofloxacin was 80, 100 and 94 per cent, respectively, during the start, mid and end of the study. Susceptibility to minocycline decreased from 100 per cent mid-study to 96 per cent at the end. Susceptibility of S. maltophilia to ceftazidime increased from 24 (in 2012) to 37 per cent (in 2016). All variations among the three phases of the study were significant for all antimicrobials tested for both the organisms. INTERPRETATION & CONCLUSIONS: While Bcc showed increased resistance to ceftazidime, meropenem and minocycline, S. maltophilia maintained >80 per cent susceptibility to minocycline, levofloxacin and co-trimoxazole throughout the decade. By 2016, Bcc was most susceptible to co-trimoxazole, whereas S. maltophilia was most susceptible to minocycline and levofloxacin.


Assuntos
Complexo Burkholderia cepacia , Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Antibacterianos/farmacologia , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA