Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830317

RESUMO

Clostridium sporogenes (C. sporogenes), as a potential probiotic, metabolizes tryptophan and produces an anti-inflammatory metabolite, indole-3-propionic acid (IPA). Herein, we studied the effects of C. sporogenes and its bioactive metabolite, IPA, on skeletal muscle development and chronic inflammation in mice. In the in vivo study, the muscle tissues and serum samples of mice with C. sporogenes supplementation were used to analyze the effects of C. sporogenes on muscle metabolism; the IPA content was determined by metabonomics and ELISA. In an in vitro study, C2C12 cells were exposed to lipopolysaccharide (LPS) alone or LPS + IPA to verify the effect of IPA on muscle cell inflammation by transcriptome, and the involved mechanism was revealed by different functional assays. We observed that C. sporogenes colonization significantly increased the body weight and muscle weight gain, as well as the myogenic regulatory factors' (MRFs) expression. In addition, C. sporogenes significantly improved host IPA content and decreased pro-inflammatory cytokine levels in the muscle tissue of mice. Subsequently, we confirmed that IPA promoted C2C12 cells' proliferation by activating MRF signaling. IPA also effectively protected against LPS-induced C2C12 cells inflammation by activating Pregnane X Receptor and restoring the inhibited miR-26a-2-3p expression. miR-26a-2-3p serves as a novel muscle inflammation regulatory factor that could directly bind to the 3'-UTR of IL-1ß, a key initiator factor in inflammation. The results suggested that C. sporogenes with its functional metabolite IPA not only helps muscle growth development, but also protects against inflammation, partly by the IPA/ miR-26a-2-3p /IL-1ß cascade.


Assuntos
Clostridium/metabolismo , Indóis/metabolismo , Interleucina-1beta/genética , MicroRNAs/genética , Células Musculares/efeitos dos fármacos , Receptor de Pregnano X/genética , Propionatos/metabolismo , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Indóis/farmacologia , Inflamação/prevenção & controle , Interleucina-1beta/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Receptor de Pregnano X/metabolismo , Probióticos/metabolismo , Propionatos/farmacologia , Transdução de Sinais , Transcriptoma , Triptofano/metabolismo
2.
Foodborne Pathog Dis ; 16(10): 704-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31135181

RESUMO

Bacterial spores are generally more resistant than vegetative bacteria to ultraviolet (UV) inactivation. The UV sensitivity of these spores must be known for implementing UV disinfection of low acid liquid foods. UV inactivation kinetics of bacterial spores in coconut water (CW) and distilled sterile water was studied. Populations of Bacillus cereus and Clostridium sporogenes dormant spores were reduced by more than 5.5 log10 at the UV-C photon fluence of 1142 µE·m-2 and 1919 µE·m-2 respectively. C. sporogenes spores showed higher UV-C resistance than B. cereus, with the photon fluence 300 µE·m-2 required for one log inactivation (D10) and 194 µE·m-2, respectively. No significant difference was observed in D10 values of spores suspended in the two fluid types (p > 0.05). The inactivation kinetics of microorganisms were described by log linear models with low root mean square error and high coefficient of determination (R2 > 0.98). This study clearly demonstrated that high levels of inactivation of bacterial spores can be achieved in CW. The baseline data generated from this study will be used to conduct spore inactivation studies in continuous flow UV systems. Further proliferation of the technology will include conducting extensive pilot studies.


Assuntos
Bacillus cereus/efeitos da radiação , Clostridium botulinum/efeitos da radiação , Cocos/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Raios Ultravioleta , Bacillus cereus/crescimento & desenvolvimento , Clostridium botulinum/crescimento & desenvolvimento , Desinfecção/métodos , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Cinética , Esporos Bacterianos/efeitos da radiação
3.
Anaerobe ; 59: 184-191, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31269456

RESUMO

Clostridium encompasses species which are relevant to human and animal disease as well as species which have industrial potential, for instance, as producers of chemicals and fuels or as tumour delivery vehicles. Genetic manipulation of these target organisms is critical for advances in these fields. DNA transfer efficiencies, however, vary between species. Low efficiencies can impede the progress of research efforts. A novel conjugal donor strain of Escherichia coli has been created which exhibits a greater than 10-fold increases in conjugation efficiency compared to the traditionally used CA434 strain in the three species tested; C. autoethanogenum DSM 10061, C. sporogenes NCIMB 10696 and C. difficile R20291. The novel strain, designated 'sExpress', does not methylate DNA at Dcm sites (CCWGG) which allows circumvention of cytosine-specific Type IV restriction systems. A robust protocol for conjugation is presented which routinely produces in the order of 105 transconjugants per millilitre of donor cells for C. autoethanogenum, 106 for C. sporogenes and 102 for C. difficile R20291. The novel strain created is predicted to be a superior conjugal donor in a wide range of species which possess Type IV restriction systems.


Assuntos
Clostridium/genética , Conjugação Genética , Escherichia coli/genética , Técnicas de Transferência de Genes , Genética Microbiana/métodos
4.
Anaerobe ; 47: 173-182, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28578132

RESUMO

In this work, the synergistic effect of electro-activated solutions (EAS) of potassium acetate and potassium citrate, nisin and moderate heat treatment to inactivate C. sporogenes PA 3679 spores was evaluated in green beans puree and whole green beans. Electro-activated solutions (EAS) of potassium acetate and potassium citrate were generated under 400 mA during 60 min. They were characterized by an oxidation-reduction potential (ORP) and pH values ranged from +300 to +1090 mV and 2.8 to 3.67, respectively. Moreover, the EAS were combined with a bacteriocin nisin at concentrations of 250, 500, 750 and 1000 IU/mL and the targeted sporicidal effect was evaluated under moderate heat treatment. The inoculated mixtures were subjected to temperatures of 95, 105 and 115 °C for exposure times of 5, 15 and 30 min. After plate counting, the synergistic effect of the hurdle principle composed of electro-activated solutions, nisin and moderate temperatures was demonstrated. The obtained results showed that the synergistic effect of the used hurdle was able to achieve an inactivation efficacy of 5.9-6.1 log CFU/mL. Furthermore, experiments carried out with whole green beans showed that spore inactivation level was significantly higher and reach 6.5 log CFU/mL. Moreover, spore morphology was examined by transmission electron microscopy and the obtained micrographs showed important damages in all of the treated spores.


Assuntos
Antibacterianos/farmacologia , Clostridium/efeitos dos fármacos , Clostridium/efeitos da radiação , Nisina/farmacologia , Soluções/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Temperatura Alta , Phaseolus/microbiologia , Acetato de Potássio/farmacologia , Citrato de Potássio/farmacologia , Soluções/química
5.
Biotechnol J ; 19(1): e2300161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818934

RESUMO

Clostridium is a genus of gram-positive obligate anaerobic bacteria. Some species of Clostridium, including Clostridium sporogenes, may be of use in bacteria-mediated cancer therapy. Spores of Clostridium are inert in healthy normoxic tissue but germinate when in the hypoxic regions of solid tumors, causing tumor regression. However, such treatments fail to completely eradicate tumors partly because of higher oxygen levels at the tumor's outer rim. In this study, we demonstrate that a degree of aerotolerance can be introduced to C. sporogenes by transfer of the noxA gene from Clostridium aminovalericum. NoxA is a water-forming NADH oxidase enzyme, and so has no detrimental effect on cell viability. In addition to its potential in cancer treatment, the noxA-expressing strain described here could be used to alleviate challenges related to oxygen sensitivity of C. sporogenes in biomanufacturing.


Assuntos
Clostridium botulinum , Neoplasias , Humanos , Clostridium/genética , Clostridium/metabolismo , Oxigênio/metabolismo
6.
Front Microbiol ; 7: 1702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840626

RESUMO

Clostridium botulinum is a highly dangerous pathogen that forms very resistant endospores that are ubiquitous in the environment, and which, under favorable conditions germinate to produce vegetative cells that multiply and form the exceptionally potent botulinum neurotoxin. To improve the control of botulinum neurotoxin-forming clostridia, it is important to understand the mechanisms involved in spore germination. Here we present models for spore germination in C. botulinum based on comparative genomics analyses, with C. botulinum Groups I and III sharing similar pathways, which differ from those proposed for C. botulinum Groups II and IV. All spores germinate in response to amino acids interacting with a germinant receptor, with four types of germinant receptor identified [encoded by various combinations of gerA, gerB, and gerC genes (gerX)]. There are three gene clusters with an ABC-like configuration; ABC [gerX1], ABABCB [gerX2] and ACxBBB [gerX4], and a single CA-B [gerX3] gene cluster. Subtypes have been identified for most germinant receptor types, and the individual GerX subunits of each cluster show similar grouping in phylogenetic trees. C. botulinum Group I contained the largest variety of gerX subtypes, with three gerX1, three gerX2, and one gerX3 subtypes, while C. botulinum Group III contained two gerX1 types and one gerX4. C. botulinum Groups II and IV contained a single germinant receptor, gerX3 and gerX1, respectively. It is likely that all four C. botulinum Groups include a SpoVA channel involved in dipicolinic acid release. The cortex-lytic enzymes present in C. botulinum Groups I and III appear to be CwlJ and SleB, while in C. botulinum Groups II and IV, SleC appears to be important.

7.
Stand Genomic Sci ; 10: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221421

RESUMO

Clostridium sporogenes DSM 795 is the type strain of the species Clostridium sporogenes, first described by Metchnikoff in 1908. It is a Gram-positive, rod-shaped, anaerobic bacterium isolated from human faeces and belongs to the proteolytic branch of clostridia. C. sporogenes attracts special interest because of its potential use in a bacterial therapy for certain cancer types. Genome sequencing and annotation revealed several gene clusters coding for proteins involved in anaerobic degradation of amino acids, such as glycine and betaine via Stickland reaction. Genome comparison showed that C. sporogenes is closely related to C. botulinum. The genome of C. sporogenes DSM 795 consists of a circular chromosome of 4.1 Mb with an overall GC content of 27.81 mol% harboring 3,744 protein-coding genes, and 80 RNAs.

8.
Int J Food Microbiol ; 210: 62-72, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26093992

RESUMO

In this study, a risk assessment of proteolytic Clostridium botulinum in canned foie gras was performed, the number of illnesses per year in France due to C. botulinum in foie gras was estimated. Data on initial level in raw materials were collected at manufacturers and analysed using a Negative Binomial distribution. The effect of the usual foie gras heat treatment (equivalent time at 121 °C: F0=0.5 min) was considered at two levels: first, it led to an inactivation (estimated to 2.3 log); second it led to a spore injury and then to a spore inhibition. This latter effect was assessed by analysing data from a challenge test study carried out with Clostridium sporogenes spores in the foie gras product. The probability of spore recovering after thermal inhibition was estimated to 9.5×10(-8) (corresponding to 7.0 log). The data on the consumption pattern were collected on the French market. The Quantitative Microbiological Risk Assessment (QMRA) model and all the assumptions are reported in detail in the study. The initial contamination of raw materials, effect of thermal treatment on microbial inactivation and spore inhibition were handled mathematically using a probabilistic framework, considering only the variability dimension. The model was implemented in Excel and run through Monte Carlo simulation, using @Risk software. In parallel, epidemiological data collected from the French Institute for Public Health Surveillance during the period 2001-2012 were used to estimate an Appropriate Level Of Protection (ALOP) and then a Food Safety Objective (FSO): ALOP equalled to 2.5×10(-3) illnesses per million inhabitant per year, FSO equalled to 1.4×10(-9) foie gras portions containing C. botulinum spore (expressed in decimal logarithm, FSO=-8.9). The QMRA model output values were smaller, but on the same order of magnitude as these two figures: 8.0×10(-4) illnesses per million inhabitants per year, and, 4.5×10(-10) (-9.3 log) foie gras portions containing C. botulinum spores able to recover. It was then possible to conclude that the current practices regarding thermal treatment of canned foie gras are sufficient to control the risk of C. botulinum in foie gras in France.


Assuntos
Botulismo/epidemiologia , Manipulação de Alimentos/normas , Microbiologia de Alimentos , Botulismo/prevenção & controle , Clostridium/isolamento & purificação , Clostridium/fisiologia , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/fisiologia , França/epidemiologia , Temperatura Alta , Humanos , Viabilidade Microbiana , Modelos Estatísticos , Medição de Risco , Esporos Bacterianos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA