Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ther ; 32(5): 1540-1560, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449312

RESUMO

Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.


Assuntos
Complemento C5a , Dinaminas , Nefrite Lúpica , Dinâmica Mitocondrial , Podócitos , Receptor da Anafilatoxina C5a , Podócitos/metabolismo , Podócitos/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Nefrite Lúpica/etiologia , Animais , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Complemento C5a/metabolismo , Humanos , Fosforilação , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Transdução de Sinais , Feminino
2.
J Infect Dis ; 212(11): 1835-40, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25980034

RESUMO

The impact of complement activation and its possible relation to cytokine responses during malaria pathology was investigated in plasma samples from patients with confirmed Plasmodium falciparum malaria and in human whole-blood specimens stimulated with malaria-relevant agents ex vivo. Complement was significantly activated in the malaria cohort, compared with healthy controls, and was positively correlated with disease severity and with certain cytokines, in particular interleukin 8 (IL-8)/CXCL8. This was confirmed in ex vivo-stimulated blood specimens, in which complement inhibition significantly reduced IL-8/CXCL8 release. P. falciparum malaria is associated with systemic complement activation and complement-dependent release of inflammatory cytokines, of which IL-8/CXCL8 is particularly prominent.


Assuntos
Ativação do Complemento/imunologia , Citocinas/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Adulto , Hemeproteínas/imunologia , Hemina/imunologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/fisiopatologia , Plasmodium falciparum/imunologia
3.
Int Immunopharmacol ; 125(Pt B): 111112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948857

RESUMO

Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.


Assuntos
Proteína HMGB1 , Nanopartículas , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Proteína HMGB1/metabolismo , Dióxido de Silício/toxicidade , Células Epiteliais/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Complemento C5a/metabolismo
4.
Theranostics ; 13(6): 2040-2056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064877

RESUMO

Rationale: Platelets can influence the progression and prognosis of colorectal cancer (CRC) through multiple mechanisms, including crosstalk with tumor-associated macrophages (TAMs). However, the mechanisms underlying the crosstalk between platelets and TAMs remain unclear. The present study aimed to investigate the role of intratumoral platelets in regulating the function of TAMs and to identify the underlying mechanisms. Methods: The interaction of platelets with macrophages was assessed in the presence or absence of the indicated compounds in vivo. An azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC mouse model was used to investigate the role of platelets in controlling CRC development. Multiplexed immunofluorescence staining, fluorescence-activated cell sorting (FACS), and RNA sequence analysis were used to examine the changes in TAMs. TAMs and bone marrow-derived macrophages (BMDMs) were treated with the indicated compounds or siRNA against specific targets, and the expression levels of signal transducer and activator of transcription 1 (STAT1), c-Jun N-terminal kinase (JNK), and P-selectin glycoprotein ligand-1 (PSGL-1) were measured by Western blotting. The mRNA expression levels of complement 5 (C5), complement 5a receptor 1 (C5ar1), Arginase 1 (Arg1) and Il10 were measured by real-time RT-PCR, and the complement 5a (C5a) concentration was measured by ELISA. The dual-luciferase reporter assay and ChIP assay were performed to examine the potential regulatory mechanisms of platelet induction of C5 transcription in TAMs. Results: In our study, we found that an increase in platelets exacerbated CRC development, while inhibiting platelet adhesion attenuated tumor growth. Platelets signal TAMs through P-selectin (CD62P) binding to PSGL-1 expressed on TAMs and activating the JNK/STAT1 pathway to induce the transcription of C5 and the release of C5a, shifting TAMs toward a protumor phenotype. Inhibiting the C5a/C5aR1 axis or PSGL-1 significantly reduced CRC growth. Conclusions: An increase in intratumoral platelets promoted CRC growth and metastasis by CD62P binding to PSGL-1 expressed on TAMs, leading to JNK/STAT1 signaling activation, which promoted C5 transcription and activated the C5a/C5aR1 axis in TAMs. Our study examined the mechanism of the crosstalk between platelets and TAMs to exacerbate CRC development and proposed a potential therapeutic strategy for CRC patients.


Assuntos
Complemento C5a , Macrófagos Associados a Tumor , Camundongos , Animais , Complemento C5a/genética , Complemento C5a/metabolismo , Macrófagos Associados a Tumor/metabolismo , Plaquetas/metabolismo , Receptor da Anafilatoxina C5a , Fator de Transcrição STAT1/metabolismo
5.
Cardiovasc Res ; 119(15): 2563-2578, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37603848

RESUMO

AIMS: Vascular calcification (VC) predicts the morbidity and mortality in cardiovascular diseases. Vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation is the crucial pathological basis for VC. To date, the molecular pathogenesis is still largely unclear. Notably, C5a-C5aR1 contributes to the development of cardiovascular diseases, and its closely related to physiological bone mineralization which is similar to VSMCs osteogenic transdifferentiation. However, the role and underlying mechanisms of C5a-C5aR1 in VC remain unexplored. METHODS AND RESULTS: A cross-sectional clinical study was utilized to examine the association between C5a and VC. Chronic kidney diseases mice and calcifying VSMCs models were established to investigate the effect of C5a-C5aR1 in VC, evaluated by changes in calcium deposition and osteogenic markers. The cross-sectional study identified that high level of C5a was associated with increased risk of VC. C5a dose-responsively accelerated VSMCs osteogenic transdifferentiation accompanying with increased the expression of C5aR1. Meanwhile, the antagonists of C5aR1, PMX 53, reduced calcium deposition, and osteogenic transdifferentiation both in vivo and in vitro. Mechanistically, C5a-C5aR1 induced endoplasmic reticulum (ER) stress and then activated PERK-eIF2α-ATF4 pathway to accelerated VSMCs osteogenic transdifferentiation. In addition, cAMP-response element-binding protein 3-like 1 (CREB3L1) was a key downstream mediator of PERK-eIF2α-ATF4 pathway which accelerated VSMCs osteogenic transdifferentiation by promoting the expression of COL1α1. CONCLUSIONS: High level of C5a was associated with increased risk of VC, and it accelerated VC by activating the receptor C5aR1. PERK-eIF2α-ATF4-CREB3L1 pathway of ER stress was activated by C5a-C5aR1, hence promoting VSMCs osteogenic transdifferentiation. Targeting C5 or C5aR1 may be an appealing therapeutic target for VC.


Assuntos
Doenças Cardiovasculares , Complemento C5 , Estresse do Retículo Endoplasmático , Calcificação Vascular , Animais , Camundongos , Cálcio , Estudos Transversais , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Transdução de Sinais , Calcificação Vascular/patologia , Complemento C5/metabolismo
6.
Cancer Lett ; 529: 70-84, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971753

RESUMO

Myeloid-derived suppressor cells (MDSCs) play a major role in cancer progression. In this study, we investigated the mechanisms by which complement C5a increases the capacity of polymorphonuclear MDSCs (PMN-MDSCs) to promote tumor growth and metastatic spread. Stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the formation of neutrophil extracellular traps (NETs). NETosis was dependent on the production of high mobility group box 1 (HMGB1) by cancer cells. Moreover, C5a induced the surface expression of the HMGB1 receptors TLR4 and RAGE in PMN-MDSCs. In a mouse lung metastasis model, inhibition of C5a, C5a receptor-1 (C5aR1) or NETosis reduced the number of circulating-tumor cells (CTCs) and the metastatic burden. In support of the translational relevance of these findings, C5a was able to stimulate migration and NETosis in PMN-MDSCs obtained from lung cancer patients. Furthermore, myeloperoxidase (MPO)-DNA complexes, as markers of NETosis, were elevated in lung cancer patients and significantly correlated with C5a levels. In conclusion, C5a induces the formation of NETs from PMN-MDSCs in the presence of cancer cells, which may facilitate cancer cell dissemination and metastasis.


Assuntos
Complemento C5a/imunologia , Armadilhas Extracelulares/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imunofenotipagem , Camundongos , Modelos Biológicos , Metástase Neoplásica , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptor da Anafilatoxina C5a/metabolismo
7.
Front Cell Infect Microbiol ; 12: 824505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433513

RESUMO

Our previous work using a murine model of pyelonephritis demonstrated that the C5a/C5aR1 axis plays a pathogenic role in acute kidney infection. In this study, we report that the C5a/C5aR1 axis also plays a pathogenic role in acute bladder infection. C5aR1-deficient mice had reduced bladder bacterial load and attenuated bladder tissue injury, which is associated with reduced expression of terminal α-mannosyl residues (Man) (a potential ligand for type 1 fimbriae of E. coli) at the luminal surface of the bladder epithelium and reduced early bacterial colonization of the bladder. In vitro, C5a stimulation enhanced mannose expression in and facilitated bacterial adhesion/colonization to human bladder epithelial cells. C5a stimulation also upregulated the activation of ERK1/2 and NF-κB signaling and gene expression of proinflammatory cytokines (i.e., Il6, Il1b, Cxcl1, Ccl2) in the epithelial cells, which could drive pro-inflammatory responses leading to tissue injury. Administration of the C5aR1 antagonist effectively reduced bladder bacterial load and tissue injury. Thus, our findings demonstrate a previously unknown pathogenic role for the C5a/C5aR1 axis in bladder infection and suggest that the C5a/C5aR1 axis-mediated upregulation of Man expression, enhancement of bacterial adhesion/colonization, and excessive inflammatory responses contribute to acute bladder infection. These findings improve our understanding of the pathogenesis of bladder infection with therapeutic implications for UTI.


Assuntos
Cistite , Pielonefrite , Escherichia coli Uropatogênica , Doença Aguda , Animais , Complemento C5a , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Receptor da Anafilatoxina C5a/genética , Escherichia coli Uropatogênica/metabolismo
8.
Inflammation ; 45(2): 739-752, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997873

RESUMO

Plasma cell mastitis (PCM) and granulomatous mastitis (GM) are the most common inflammatory diseases constituting nonbacterial mastitis (NBM). However, the pathogenesis of NBM remains unclear. In this study, risk factors for NBM were assessed, as well as the pathological features of PCM and GM. The levels of C3/C3a-C3aR and C5/C5a-C5aR1 of tissues were detected by IHC and WB. Exosomes were isolated from serum and identified by transmission electron microscopy. Then, C3 and C5 levels were detected in peripheral blood, and exosomes were assessed by flow cytometry and immunoelectron microscopy. Obesity and prolonged lactation were risk factors for NBM. The infiltration of plasma cells and lymphocytes around the dilated catheter in PCM and the formation of granulomatous structures in GM were the respective pathological features. C3/C3a-C3aR and C5/C5a-C5aR1 levels were elevated in PCM and GM tissue samples. There were no differences in peripheral blood levels of C3 and C5, while C3a and C5a were highly expressed in exosomes. These results suggest that the complement family is activated in PCM and GM, exosomes enrich C3a and C5a, and mediate the spread of inflammation. These findings provide new insights into the molecular mechanisms of PCM and GM and identify therapeutic targets.


Assuntos
Mastite Granulomatosa , Ativação do Complemento , Feminino , Citometria de Fluxo , Humanos , Inflamação
9.
Front Immunol ; 12: 652242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936074

RESUMO

Systemic complement activation drives a plethora of pathological conditions, but its role in snake envenoming remains obscure. Here, we explored complement's contribution to the physiopathogenesis of Naja annulifera envenomation. We found that N. annulifera venom promoted the generation of C3a, C4a, C5a, and the soluble Terminal Complement Complex (sTCC) mediated by the action of snake venom metalloproteinases. N. annulifera venom also induced the release of lipid mediators and chemokines in a human whole-blood model. This release was complement-mediated, since C3/C3b and C5a Receptor 1 (C5aR1) inhibition mitigated the effects. In an experimental BALB/c mouse model of envenomation, N. annulifera venom promoted lipid mediator and chemokine production, neutrophil influx, and swelling at the injection site in a C5a-C5aR1 axis-dependent manner. N. annulifera venom induced systemic complementopathy and increased interleukin and chemokine production, leukocytosis, and acute lung injury (ALI). Inhibition of C5aR1 with the cyclic peptide antagonist PMX205 rescued mice from these systemic reactions and abrogated ALI development. These data reveal hitherto unrecognized roles for complement in envenomation physiopathogenesis, making complement an interesting therapeutic target in envenomation by N. annulifera and possibly by other snake venoms.


Assuntos
Ativação do Complemento/imunologia , Complemento C5a/imunologia , Complemento C5a/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Venenos de Serpentes/imunologia , Animais , Biomarcadores , Quimiocinas/metabolismo , Modelos Animais de Doenças , Humanos , Hidrólise , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Modelos Biológicos , Naja , Ligação Proteica , Transdução de Sinais , Mordeduras de Serpentes
10.
Front Immunol ; 10: 1866, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447855

RESUMO

Psoriasis is one of the most common chronic inflammatory skin diseases, affecting ~2% of the population. The lack of characterization of the pathogenesis of psoriasis has hindered efficient clinical treatment of the disease. In our study, we observed that expression of complement component 5a receptor 1(C5aR1) was significantly increased in skin lesions of both imiquimod (IMQ) and IL23-induced psoriatic mice and patients with psoriasis. C5aR1 deficiency or treatment with C5a receptor 1 antagonist (C5aR1a) in mice significantly attenuated psoriasis-like skin lesions and expression of inflammatory cytokines and chemokines. Moreover, C5aR1 deficiency significantly decreased IMQ-induced infiltration of plasmacytoid dendritic cells (pDCs), monocytes and neutrophils in psoriatic skin lesions and functions of pDCs, evidenced by the remarkable reduction in the IMQ-induced production of interferon-α (IFN-α) and tumor necrosis factor α (TNF-α), and FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent pDCs differentiation. Accordingly, in vitro treatment with recombinant C5a accelerated pDCs migration and the differentiation of bone marrow cells into pDCs. Furthermore, biopsies of psoriatic patients showed a dramatic increase of C5aR1+ pDCs infiltration in psoriatic skin lesions, compared to healthy subjects. Our results provide direct evidence that C5a/C5aR1 signaling plays a critical role in the pathogenesis of psoriasis. Inhibition of C5a/C5aR1 pathway is expected to be beneficial in the treatment of patients with psoriasis.


Assuntos
Complemento C5a/imunologia , Psoríase/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Complemento C5a/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/metabolismo , Psoríase/patologia , Receptor da Anafilatoxina C5a/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31134161

RESUMO

Respiratory viral infections can directly lead to kidney damage such as IgA nephropathy (IgAN), partly due to mucosal immune system dysfunction. Although the activated C5a-C5aR1 axis results in increased Th1 and Th17 frequencies but reduced Treg frequencies in Respiratory syncytial virus (RSV) infection, how this axis affects Th cell disorders in RSV-induced IgAN exacerbation remains unknown. Here, we used a mouse model to dissect the activation of C5a-C5aR1 by RSV and the consequences on the regulation of Th1, Th17, and Treg immune responses in IgA nephropathy. RSV fusion protein was clearly deposited not only in the pulmonary interstitium but also in the glomerulus in RSV-IgAN mice, and RSV infection led to more severe pathological changes in the kidneys in IgAN mice. Blocking the C5a-C5aR1 axis resulted in a decrease in the albumin-to-creatinine ratio, and the attenuation of kidney damage in IgAN and RSV-IgAN mice might be partly attributed to the inhibition of Th cell and cytokine dysfunction. Th1, Th17 and Treg immune responses and their corelative cytokines were disrupted by RSV infection and rescued by C5aR1 inhibition. Moreover, we constructed a coculture system of human mesangial cells and CD4+ T cells and found that RSV infection might lead to CD4+ T cell production via human mesangial cells-enhanced CD4+ T cell proliferation, consequently increasing IL-17 levels. These pathological behaviors were augmented by C5a stimulation and decreased by C5aR1 inhibition. Thus, C5aR1 inhibition alters both kidney damage and Th1, Th17, and Treg cell dysfunction in RSV-induced IgAN exacerbation and locally regulates HMC antigen presentation function in the kidney. Taken together, our data offer profound evidence that blocking the C5a-C5aR1 axis might be a potential therapy for RSV-induced IgAN.


Assuntos
Complemento C5a/imunologia , Glomerulonefrite por IGA/imunologia , Rim/imunologia , Rim/lesões , Receptor da Anafilatoxina C5a/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Linfócitos T CD4-Positivos , Linhagem Celular , Proliferação de Células , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Rim/patologia , Células Mesangiais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus Sincicial Respiratório Humano/patogenicidade , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA