Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146503

RESUMO

CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.

2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894817

RESUMO

Colon cancer is a leading cause of death worldwide. Identification of new molecular factors governing the invasiveness of colon cancer holds promise in developing screening and targeted therapeutic methods. The Tyrosine Kinase Substrate with four SH3 domains (TKS4) and the CD2-associated protein (CD2AP) have previously been linked to dynamic actin assembly related processes and cancer cell migration, although their co-instructive role during tumor formation remained unknown. Therefore, this study was designed to investigate the TKS4-CD2AP interaction and study the interdependent effect of TKS4/CD2AP on oncogenic events. We identified CD2AP as a novel TKS4 interacting partner via co-immunoprecipitation-mass spectrometry methods. The interaction was validated via Western blot (WB), immunocytochemistry (ICC) and proximity ligation assay (PLA). The binding motif of CD2AP was explored via peptide microarray. To uncover the possible cooperative effects of TKS4 and CD2AP in cell movement and in epithelial-mesenchymal transition (EMT), we performed gene silencing and overexpressing experiments. Our results showed that TKS4 and CD2AP form a scaffolding protein complex and that they can regulate migration and EMT-related pathways in HCT116 colon cancer cells. This is the first study demonstrating the TKS4-CD2AP protein-protein interaction in vitro, their co-localization in intact cells, and their potential interdependent effects on partial-EMT in colon cancer.


Assuntos
Neoplasias do Colo , Transição Epitelial-Mesenquimal , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Neoplasias do Colo/genética , Proteínas do Citoesqueleto/metabolismo
3.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055253

RESUMO

Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1- or both FHL1- and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication.IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMR-based structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.


Assuntos
Vírus Chikungunya/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítio Alostérico , Animais , Sítios de Ligação , Linhagem Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM/química , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/genética , Mutação , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
4.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694937

RESUMO

Venezuelan equine encephalitis virus (VEEV) is one of the important human and animal pathogens. It forms replication enzyme complexes (RCs) containing viral nonstructural proteins (nsPs) that mediate the synthesis of virus-specific RNAs. The assembly and associated functions of RC also depend on the presence of a specific set of host proteins. Our study demonstrates that the hypervariable domain (HVD) of VEEV nsP3 interacts with the members of the FXR family of cellular proteins and also binds the Src homology 3 (SH3) domain-containing proteins CD2AP and SH3KBP1. Interactions with FXR family members are mediated by the C-terminal repeating peptide of HVD. A single short, minimal motif identified in this study is sufficient for driving efficient VEEV replication in the absence of HVD interactions with other host proteins. The SH3 domain-containing proteins bind to another fragment of VEEV HVD. They can promote viral replication in the absence of FXR-HVD interactions albeit less efficiently. VEEV replication can be also switched from an FXR-dependent to a chikungunya virus-specific, G3BP-dependent mode. The described modifications of VEEV HVD have a strong impact on viral replication in vitro and pathogenesis. Their effects on viral pathogenesis depend on mouse age and the genetic background of the virus.IMPORTANCE The replication of alphaviruses is determined by specific sets of cellular proteins, which mediate the assembly of viral replication complexes. Some of these critical host factors interact with the hypervariable domain (HVD) of alphavirus nsP3. In this study, we have explored binding sites of host proteins, which are specific partners of nsP3 HVD of Venezuelan equine encephalitis virus. We also define the roles of these interactions in viral replication both in vitro and in vivo A mechanistic understanding of the binding of CD2AP, SH3KBP1, and FXR protein family members to VEEV HVD uncovers important aspects of alphavirus evolution and determines new targets for the development of alphavirus-specific drugs and directions for viral attenuation and vaccine development.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Linhagem Celular , Vírus Chikungunya/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Encefalomielite Equina Venezuelana/virologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Domínios de Homologia de src
5.
FASEB J ; 34(4): 5453-5464, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086849

RESUMO

The foot processes of podocytes exhibit a dynamic actin cytoskeleton, which maintains their complex cell structure and antagonizes the elastic forces of the glomerular capillary. Interdigitating secondary foot processes form a highly selective filter for proteins in the kidney, the slit membrane. Knockdown of slit membrane components such as Nephrin or Neph1 and cytoskeletal adaptor proteins such as CD2AP in mice leads to breakdown of the filtration barrier with foot process effacement, proteinuria, and early death of the mice. Less is known about the crosstalk between the slit membrane-associated proteins and cytoskeletal components inside the podocyte foot processes. Our study shows that LASP-1, an actin-binding protein, is highly expressed in podocytes. Electron microscopy studies demonstrate that LASP-1 is found at the slit membrane suggesting a role in anchoring slit membrane components to the actin cytoskeleton. Live cell imaging experiments with transfected podocytes reveal that LASP-1 is either part of a highly dynamic granular complex or a static, actin cytoskeleton-bound protein. We identify CD2AP as a novel LASP-1 binding partner that regulates its association with the actin cytoskeleton. Activation of the renin-angiotensin-aldosterone system, which is crucial for podocyte function, leads to phosphorylation and altered localization of LASP-1. In vivo studies using the Drosophila nephrocyte model indicate that Lasp is necessary for the slit membrane integrity and functional filtration.


Assuntos
Citoesqueleto de Actina/fisiologia , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Rim/fisiologia , Proteínas dos Microfilamentos/metabolismo , Podócitos/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Fosforilação
6.
J Biol Chem ; 294(28): 10886-10899, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31138646

RESUMO

A hallmark of Alzheimer's disease (AD) pathology is the appearance of senile plaques, which are composed of ß-amyloid (Aß) peptides. Aß is produced by sequential cleavages of amyloid precursor protein (APP) by ß- and γ-secretases. These cleavages take place in endosomes during intracellular trafficking of APP through the endocytic and recycling pathways. Genome-wide association studies have identified several risk factors for late-onset AD, one of which is CD2-associated protein (CD2AP), an adaptor molecule that regulates membrane trafficking. Although CD2AP's involvement in APP trafficking has recently been reported, how APP trafficking is regulated remains unclear. We sought to address this question by investigating the effect of CD2AP overexpression or knockdown on the intracellular APP distribution and degradation of APP in cultured COS-7 and HEK293 cells. We found that overexpression of CD2AP increases the localization of APP to Rab7-positive late endosomes, and decreases its localization to Rab5-positive early endosomes. CD2AP overexpression accelerated the onset of APP degradation without affecting its degradation rate. Furthermore, nutrient starvation increased the localization of APP to Rab7-positive late endosomes, and CD2AP overexpression stimulated starvation-induced lysosomal APP degradation. Moreover, the effect of CD2AP on the degradation of APP was confirmed by CD2AP overexpression and knockdown in primary cortical neurons from mice. We conclude that CD2AP accelerates the transfer of APP from early to late endosomes. This transfer in localization stimulates APP degradation by reducing the amount of time before degradation initiation. Taken together, these results may explain why impaired CD2AP function is a risk factor for AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Células COS , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Endossomos/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , Placa Amiloide/metabolismo , Transporte Proteico , Proteólise , Vesículas Transportadoras/metabolismo
7.
J Cell Sci ; 131(1)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29175910

RESUMO

Our previous studies of PAWS1 (protein associated with SMAD1; also known as FAM83G) have suggested that this molecule has roles beyond BMP signalling. To investigate these roles, we have used CRISPR/Cas9 to generate PAWS1-knockout U2OS osteosarcoma cells. Here, we show that PAWS1 plays a role in the regulation of the cytoskeletal machinery, including actin and focal adhesion dynamics, and cell migration. Confocal microscopy and live cell imaging of actin in U2OS cells indicate that PAWS1 is also involved in cytoskeletal dynamics and organization. Loss of PAWS1 causes severe defects in F-actin organization and distribution as well as in lamellipodial organization, resulting in impaired cell migration. PAWS1 interacts in a dynamic fashion with the actin/cytoskeletal regulator CD2AP at lamellae, suggesting that its association with CD2AP controls actin organization and cellular migration. Genetic ablation of CD2AP from U2OS cells instigates actin and cell migration defects reminiscent of those seen in PAWS1-knockout cells.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Adesões Focais/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais
8.
Mol Carcinog ; 59(4): 339-352, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31989722

RESUMO

Diffuse gastric cancer (DGC) is a lethal malignancy lacking effective systemic therapy. Among the most provocative recent results in DGC has been that the alter of the cellular cytoskeleton and intercellular adhesion. CD2-associated protein (CD2AP) is one of the critical proteins regulating cytoskeleton assembly and intercellular adhesion. However, no study has investigated the expression and biological significance of CD2AP in gastric cancer (GC) to date. Therefore, the aim of our study was to explore if the expression of CD2AP is associated with any clinical features of GC and to elucidate the underlying mechanism. Immunohistochemistry of 620 patient tissue samples indicated that the expression of CD2AP is downregulated in DGC. Moreover, a low CD2AP level was indicative of poor patient prognosis. In vitro, forced expression of CD2AP caused a significant decrease in the migration and invasion of GC cells, whereas depletion of CD2AP had the opposite effect. Immunofluorescence analysis indicated that CD2AP promoted cellular adhesion and influenced cell cytoskeleton assembly via interaction with the F-actin capping protein CAPZA1. Overall, the upregulation of CD2AP could attenuate GC metastasis, suggesting CD2AP as a novel biomarker for the prognosis and treatment of patients with GC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular/genética , Proteínas do Citoesqueleto/genética , Citoesqueleto/metabolismo , Neoplasias Gástricas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Interferência de RNA , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
9.
J Am Soc Nephrol ; 30(7): 1220-1237, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235616

RESUMO

BACKGROUND: CD2-associated protein (CD2AP), a slit diaphragm-associated scaffolding protein involved in survival and regulation of the cytoskeleton in podocytes, is considered a "stabilizer" of the slit diaphragm complex that connects the slit diaphragm protein nephrin to the cytoskeleton of the cell. Tyrosine phosphorylation of slit diaphragm molecules can influence their surface expression, but it is unknown whether tyrosine phosphorylation events of CD2AP are also physiologically relevant to slit diaphragm stability. METHODS: We used isoelectric focusing, western blot analysis, and immunofluorescence to investigate phosphorylation of CD2AP, and phospho-CD2AP antibodies and site-directed mutagenesis to define the specific phosphorylated tyrosine residues. We used cross-species rescue experiments in Cd2apKD zebrafish and in Drosophila cindrRNAi mutants to define the physiologic relevance of CD2AP phosphorylation of the tyrosine residues. RESULTS: We found that VEGF-A stimulation can induce a tyrosine phosphorylation response in CD2AP in podocytes, and that these phosphorylation events have an important effect on slit diaphragm protein localization and functionality in vivo. We demonstrated that tyrosine in position Y10 of the SH3-1 domain of CD2AP is indispensable for CD2AP function in vivo. We found that the binding affinity of nephrin to CD2AP is significantly enhanced in the absence of Y10; however, unexpectedly, this increased affinity leads not to stabilization but to functional impairment of the glomerular filtration barrier. CONCLUSIONS: Our findings provide insight into CD2AP and its phosphorylation in the context of slit diaphragm functionality, and indicate a fine-tuned affinity balance of CD2AP and nephrin that is influenced by receptor tyrosine kinase stimulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/química , Tirosina/metabolismo , Animais , Drosophila melanogaster , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Fosforilação , Podócitos/metabolismo , Estabilidade Proteica , Fator A de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra
10.
Dev Biol ; 433(1): 94-107, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133184

RESUMO

Apoptosis is crucial during the morphogenesis of most organs and tissues, and is utilized for tissues to achieve their proper size, shape and patterning. Many signaling pathways contribute to the precise regulation of apoptosis. Here we show that Jun N-terminal Kinase (JNK) activity contributes to the coordinated removal of interommatidial cells via apoptosis in the Drosophila pupal retina. This is consistent with previous findings that JNK activity promotes apoptosis in other epithelia. However, we found that JNK activity is repressed by Cindr (the CIN85 and CD2AP ortholog) in order to promote cell survival. Reducing the amount of Cindr resulted in ectopic cell death. Increased expression of the Drosophila JNK basket in the setting of reduced cindr expression was found to result in even more severe apoptosis, whilst ectopic death was found to be reduced if retinas were heterozygous for basket. Hence Cindr is required to properly restrict JNK-mediated apoptosis in the pupal eye, resulting in the correct number of interommatidial cells. A lack of precise control over developmental apoptosis can lead to improper tissue morphogenesis.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Animais , Apoptose/fisiologia , Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/enzimologia , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas dos Microfilamentos/metabolismo , Morfogênese , Pupa/metabolismo , Retina/citologia , Retina/enzimologia , Retina/metabolismo , Transdução de Sinais
11.
J Cell Biochem ; 120(10): 16516-16523, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31131477

RESUMO

The functions of miR-182-5p in the pathogenesis of diabetic nephropathy (DN) remain largely unclear. Here, we studied the roles and relationship between miR-182-5p and CD2AP in the development of DN. We used real-time polymerase chain reaction (PCR) to compare miR-182-5p expression between DN and control groups, while computational analysis and luciferase assays were used to confirm CD2AP as a miR-182-5p target. Western blot and real-time PCR were then used to measure the messenger RNA (mRNA) and protein expression of CD2AP in the presence of miR-182-5p. The results showed that miR-182-5p was highly expressed in cells isolated from people with DN. In addition, the luciferase activity of cells transfected with wild-type/mutant CD2AP confirmed CD2AP as a direct target of miR-182-5p. The expression levels of CD2AP mRNA and protein were much lower in the DN group compared with that in the normal group. In addition, the expression levels of CD2AP mRNA and protein were evidently increased by a miR-182-5p inhibitor, but notably downregulated by miR-182-5p mimics or CD2AP small interfering RNA (siRNA). Furthermore, miR-182-5p and CD2Ap siRNA significantly reduced the survival rate and viability of transfected cells, while the miR-182-5p inhibitor exhibited an opposite effect. These findings indicated the presence of a negative regulatory relationship between miR-182-5p and CD2AP in podocytes cells and suggested that the overexpression of miR-182-5p contributes to the pathogenesis of DN.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas do Citoesqueleto/metabolismo , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , MicroRNAs/biossíntese , Podócitos/metabolismo , Idoso , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Podócitos/patologia , Fatores de Risco
12.
Kidney Int ; 95(1): 57-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30612599

RESUMO

Although sequence variants in CD2-associated protein (CD2AP) have been identified in patients with focal segmental glomerulosclerosis (FSGS), definitive proof of causality in human disease is meager. By whole-exome sequencing, we identified a homozygous frame-shift mutation in CD2AP (p.S198fs) in three siblings born of consanguineous parents who developed childhood-onset FSGS and end stage renal disease. When the same frameshift mutation was introduced in mice by gene editing, the mice developed FSGS and kidney failure. These results provide conclusive evidence that homozygous mutation of CD2AP causes FSGS in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Glomerulosclerose Segmentar e Focal/genética , Falência Renal Crônica/patologia , Animais , Consanguinidade , Modelos Animais de Doenças , Progressão da Doença , Feminino , Mutação da Fase de Leitura , Edição de Genes , Técnicas de Introdução de Genes , Glomerulosclerose Segmentar e Focal/patologia , Homozigoto , Humanos , Falência Renal Crônica/genética , Masculino , Camundongos , Camundongos Transgênicos , Linhagem , Sequenciamento do Exoma
13.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899097

RESUMO

Alphaviruses are widely distributed in both hemispheres and circulate between mosquitoes and amplifying vertebrate hosts. Geographically separated alphaviruses have adapted to replication in particular organisms. The accumulating data suggest that this adaptation is determined not only by changes in their glycoproteins but also by the amino acid sequence of the hypervariable domain (HVD) of the alphavirus nsP3 protein. We performed a detailed investigation of chikungunya virus (CHIKV) nsP3 HVD interactions with host factors and their roles in viral replication in vertebrate and mosquito cells. The results demonstrate that CHIKV HVD is intrinsically disordered and binds several distinctive cellular proteins. These host factors include two members of the G3BP family and their mosquito homolog Rin, two members of the NAP1 family, and several SH3 domain-containing proteins. Interaction with G3BP proteins or Rin is an absolute requirement for CHIKV replication, although it is insufficient to solely drive it in either vertebrate or mosquito cells. To achieve a detectable level of virus replication, HVD needs to bind members of at least one more protein family in addition to G3BPs. Interaction with NAP1L1 and NAP1L4 plays a more proviral role in vertebrate cells, while binding of SH3 domain-containing proteins to a proline-rich fragment of HVD is more critical for virus replication in the cells of mosquito origin. Modifications of binding sites in CHIKV HVD allow manipulation of the cell specificity of CHIKV replication. Similar changes may be introduced into HVDs of other alphaviruses to alter their replication in particular cells or tissues.IMPORTANCE Alphaviruses utilize a broad spectrum of cellular factors for efficient formation and function of replication complexes (RCs). Our data demonstrate for the first time that the hypervariable domain (HVD) of chikungunya virus nonstructural protein 3 (nsP3) is intrinsically disordered. It binds at least 3 families of cellular proteins, which play an indispensable role in viral RNA replication. The proteins of each family demonstrate functional redundancy. We provide a detailed map of the binding sites on CHIKV nsP3 HVD and show that mutations in these sites or the replacement of CHIKV HVD by heterologous HVD change cell specificity of viral replication. Such manipulations with alphavirus HVDs open an opportunity for development of new irreversibly attenuated vaccine candidates. To date, the disordered protein fragments have been identified in the nonstructural proteins of many other viruses. They may also interact with a variety of cellular factors that determine critical aspects of virus-host interactions.


Assuntos
Vírus Chikungunya/fisiologia , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Vírus Chikungunya/química , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Culicidae , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Domínios Proteicos , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral
14.
Cell Microbiol ; 20(7): e12838, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29520916

RESUMO

Theileria annulata is an apicomplexan parasite that modifies the phenotype of its host cell completely, inducing uncontrolled proliferation, resistance to apoptosis, and increased invasiveness. The infected cell thus resembles a cancer cell, and changes to various host cell signalling pathways accompany transformation. Most of the molecular mechanisms leading to Theileria-induced immortalization of leukocytes remain unknown. The parasite dissolves the surrounding host cell membrane soon after invasion and starts interacting with host proteins, ensuring its propagation by stably associating with the host cell microtubule network. By using BioID technology together with fluorescence microscopy and co-immunoprecipitation, we identified a CLASP1/CD2AP/EB1-containing protein complex that surrounds the schizont throughout the host cell cycle and integrates bovine adaptor proteins (CIN85, 14-3-3 epsilon, and ASAP1). This complex also includes the schizont membrane protein Ta-p104 together with a novel secreted T. annulata protein (encoded by TA20980), which we term microtubule and SH3 domain-interacting protein (TaMISHIP). TaMISHIP localises to the schizont surface and contains a functional EB1-binding SxIP motif, as well as functional SH3 domain-binding Px(P/A)xPR motifs that mediate its interaction with CD2AP. Upon overexpression in non-infected bovine macrophages, TaMISHIP causes binucleation, potentially indicative of a role in cytokinesis.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Theileria annulata/crescimento & desenvolvimento , Animais , Bovinos , Células Cultivadas , Imunoprecipitação , Microscopia de Fluorescência , Ligação Proteica , Mapeamento de Interação de Proteínas
15.
Cell Mol Life Sci ; 75(14): 2577-2589, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704008

RESUMO

The increased production of the 42 aminoacids long beta-amyloid (Aß42) peptide has been established as a causal mechanism of the familial early onset Alzheimer's disease (AD). In contrast, the causal mechanisms of the late-onset AD (LOAD), that affects most AD patients, remain to be established. Indeed, Aß42 accumulation has been detected more than 30 years before diagnosis. Thus, the mechanisms that control Aß accumulation in LOAD likely go awry long before pathogenesis becomes detectable. Early on, APOE4 was identified as the biggest genetic risk factor for LOAD. However, since APOE4 is not present in all LOAD patients, genome-wide association studies of thousands of LOAD patients were undertaken to identify other genetic variants that could explain the development of LOAD. PICALM, BIN1, CD2AP, SORL1, and PLD3 are now with APOE4 among the identified genes at highest risk in LOAD that have been implicated in Aß42 production. Recent evidence indicates that the regulation of the endocytic trafficking of the amyloid precursor protein (APP) and/or its secretases to and from sorting endosomes is determinant for Aß42 production. Thus, here, we will review the described mechanisms, whereby these genetic risk factors can contribute to the enhanced endocytic production of Aß42. Dissecting causal LOAD mechanisms of Aß42 accumulation, underlying the contribution of each genetic risk factor, will be required to identify therapeutic targets for novel personalized preventive strategies.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Endossomos/metabolismo , Estudo de Associação Genômica Ampla/métodos , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Transporte Proteico , Fatores de Risco
16.
BMC Nephrol ; 20(1): 106, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30922260

RESUMO

BACKGROUND: To establish a model of chronic renal fibrosis following acute kidney injury (AKI) in BALB/c mice and to observe the effect of AKI on podocyte injury and chronic fibrosis of the kidney. Additional aims included using the model to explore the role of podocyte injury in AKI and post-injury fibrosis. METHODS: Fifty BALB/C mice were randomly divided into control group (Ctr), sham group (sham), AKI 20 group (renal ischemia, 20 min reperfusion), AKI 30 group (renal ischemia, 30 min reperfusion) and AKI 40 group (renal ischemia, 40 min reperfusion). Mice serum and 24-h urine were collected on the 8th, 9th, 10th, 14th, and 28th days for urinary protein, serum creatinine (Scr) and blood urea nitrogen (BUN) analysis. HE staining, transmission electron microscopy (TEM), Masson staining, Q-PCR, Western Blot and immunohistochemistry were applied. RESULTS: Serum Scr and BUN levels across all AKI groups at the 9th day were significantly higher (P < 0.05) than controls, with higher reperfusion groups maintaining that increase up to 28 days (P < 0.05). Compared with Ctr group, the urinary protein of the AKI 40 group significantly rose on the 9th day (P < 0.05), normalizing immediately on the 10th day (P < 0.05). In contrast, the AKI 30 group rose significantly on the 14th day (P < 0.05) maintaining elevated levels for two weeks (P < 0.05). HE staining demonstrated ischemia-dependent renal tissue damage was aggravated in the mild to aggravated AKI groups. Mesangial proliferation, glomerulosclerosis, and tubulointerstitial pathology were also significantly increased in these groups (P < 0.05). Masson staining further showed that glomerular, renal tubular, and interstitial collagen were increased by ischemia in a time-dependent manner. Transmission EM additionally that podocytes of the mild to severe AKI groups displayed extensive fusion, exfoliation and GBM exposure. Synaptopodin, Nephrin, and CD2AP mRNA and protein expression demonstrated ischemic time-dependent decreases, while the TRPC6 was increased. There was a significant difference in the levels of Synaptopodin, Nephrin, CD2AP, and TRPC6 between the mild and severe AKI groups (P < 0.05). CONCLUSIONS: 1) During the AKI process mice podocyte injury, proteinuria and the subsequent progression into chronic renal fibrosis is observed.2) Podocyte injury may be one of the causes of ischemia-reperfusion acute kidney injury and post-injury fibrosis.


Assuntos
Injúria Renal Aguda/patologia , Rim/patologia , Podócitos/patologia , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/metabolismo , Animais , Fibrose/metabolismo , Fibrose/patologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Podócitos/metabolismo , Distribuição Aleatória , Traumatismo por Reperfusão/metabolismo
17.
Dev Biol ; 410(2): 135-149, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26772997

RESUMO

Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.


Assuntos
Proteínas de Drosophila/fisiologia , MAP Quinase Quinase 4/metabolismo , Proteínas dos Microfilamentos/fisiologia , Animais , Drosophila/genética , Epitélio/metabolismo , Feminino , Masculino
18.
J Biol Chem ; 291(49): 25462-25475, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27765817

RESUMO

Exosomes, 40-150-nm extracellular vesicles, transport biological macromolecules that mediate intercellular communications. Although exosomes are known to originate from maturation of endosomes into multivesicular endosomes (also known as multivesicular bodies) with subsequent fusion of the multivesicular endosomes with the plasma membrane, it remains unclear how cargos are selected for exosomal release. Using an inducible expression system for the exosome cargo protein GPRC5B and following its trafficking trajectory, we show here that newly synthesized GPRC5B protein accumulates in the Golgi complex prior to its release into exosomes. The L-type lectin LMAN2 (also known as VIP36) appears to be specifically required for the accumulation of GPRC5B in the Golgi complex and restriction of GPRC5B transport along the exosomal pathway. This may occur due to interference with the adaptor protein GGA1-mediated trans Golgi network-to-endosome transport of GPRC5B. The adaptor protein CD2AP-mediated internalization following cell surface delivery appears to contribute to the Golgi accumulation of GPRC5B, possibly in parallel with biosynthetic/secretory trafficking from the endoplasmic reticulum. Our data thus reveal a Golgi-traversing pathway for exosomal release of the cargo protein GPRC5B in which CD2AP facilitates the entry and LMAN2 impedes the exit of the flux, respectively.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Exossomos/metabolismo , Complexo de Golgi/metabolismo , Lectinas de Ligação a Manose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Proteínas do Citoesqueleto/genética , Cães , Exossomos/genética , Complexo de Golgi/genética , Células HEK293 , Humanos , Lectinas de Ligação a Manose/genética , Proteínas de Membrana Transportadoras/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
19.
Clin Exp Nephrol ; 21(1): 83-91, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26975192

RESUMO

BACKGROUND: Cyclosporine A (CsA) is used globally as an immunosuppressant for the treatment of immune-mediated nephrotic syndrome (NS). However, its long-term use causes nephrotoxicity characterized by tubulointerstitial injury and glomerulosclerosis. The present study aimed to investigate the associations between histomorphological findings and immunohistological expression of Cathepsin L (CatL) and CD2-associated protein (CD2AP) in patients with NS mediated with CsA. METHODS: A total of 18 patients with child-onset NS were divided into two groups after treatment with CsA for 2 years (group A; n = 10) and more than 4 years (group B; n = 8), respectively. Analyses of relationships between tubulointerstitial disorders and expression of CatL and CD2AP proteins were performed using immunohistochemistry of paired renal specimens. RESULTS: Glomeruli with arteriole hyalinization were significantly increased in both groups depending on dosage periods, although degrees of tubule and interstitial injury did not differ between groups. CD2AP expression was significantly greater in podocytes (P = 0.046) and was significantly less in proximal tubule cells (P = 0.014) in patients of group B compared with those of group A. Moreover, CD2AP expression was significantly increased in lateral tubule cells in both groups (group A, P = 0.02; group B, P = 0.001), and CatL expression in glomeruli and tubule cells did not change with the duration of CsA treatment in either patient group. CONCLUSIONS: CD2AP expression in renal tubules may histologically associate with tissue hypoxia and reflected recovery from CsA-mediated renal injury in patients, even with mild histological features of tubulointerstitial disorder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/análise , Catepsina L/análise , Ciclosporina/efeitos adversos , Proteínas do Citoesqueleto/análise , Glomerulonefrite/induzido quimicamente , Imunossupressores/efeitos adversos , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Síndrome Nefrótica/tratamento farmacológico , Adolescente , Adulto , Criança , Feminino , Glomerulonefrite/enzimologia , Glomerulonefrite/patologia , Humanos , Imuno-Histoquímica , Glomérulos Renais/enzimologia , Glomérulos Renais/patologia , Túbulos Renais/enzimologia , Túbulos Renais/patologia , Masculino , Síndrome Nefrótica/diagnóstico , Podócitos/enzimologia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
20.
J Biol Chem ; 290(42): 25275-92, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26296892

RESUMO

CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas ras/metabolismo , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Sítios de Ligação , Biologia Computacional , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Células HEK293 , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA