Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 71(6): 923-939.e10, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174292

RESUMO

The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore's microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex.


Assuntos
Proteínas Cromossômicas não Histona/ultraestrutura , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Centrômero/fisiologia , Proteína Centromérica A/metabolismo , Proteína Centromérica A/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas Nucleares/metabolismo
2.
Respir Res ; 24(1): 113, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061713

RESUMO

BACKGROUND: Centromere protein O (CENPO) is a newly discovered constitutive centromeric protein, associated with cell death. However, little is known about how CENPO expression is associated with human cancers or immune infiltration. Here, we assessed the function of CENPO in pan-cancer and further verified the results in lung adenocarcinoma (LUAD) through in vitro and in vivo experiments. METHODS: Sangerbox and TCGA databases were used to evaluate the CENPO expression level in different human cancer types. A subsequent evaluation of the potential role of CENPO as a diagnostic and prognostic biomarker in pancancer was conducted. The CENPO mutations were analyzed using the cBioPortal database and its function was analyzed using the LinkedOmics and CancerSEA databases. The TIMER2 and TISIDB websites were used to find out how CENPO affects immune infiltration. The expression level of CENPO in LUAD was revealed by TCGA database and immunohistochemical (IHC) staining. Targetscan, miRWalk, miRDB, miRabel, LncBase databases, and Cytoscape tool were used to identify microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that regulate expression and construct ceRNA network. Subsequently, loss-of-function assays were performed to identify the functions of CENPO on the malignant behavior and tumor growth of LUAD in vitro and in vivo experiments. RESULTS: In most cancers, CENPO was upregulated and mutated, which predicted a poorer prognosis. Furthermore, infiltration of CENPO and myeloid-derived suppressor cells (MDSC) showed a significant positive correlation, while T-cell NK infiltration showed a significant negative correlation in most cancers. CENPO was expressed at high levels in LUAD and was correlated with p-TNM stage. Furthermore, CENPO knockdown suppressed the malignant phenotypes of LUAD cells, manifested by slower proliferation, cycle in G2, increased apoptosis, decreased migration, and attenuated tumorigenesis. Furthermore, CENPO knockdown decreased CDK1/6, PIK3CA, and inhibited mTOR phosphorylation, suggesting that the mTOR signaling pathway may be involved in CENPO-mediated regulation of LUAD development. CONCLUSIONS: In pan-cancer, especially LUAD, CENPO may be a potential biomarker and oncogene. Furthermore, CENPO has been implicated in immune cell infiltration in pan-cancer and represents a potential immunotherapeutic target for tumor therapy.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Carcinogênese , Morte Celular , Óxidos N-Cíclicos , Neoplasias Pulmonares/genética , Prognóstico , Proteínas Cromossômicas não Histona
3.
J Mol Recognit ; 34(8): e2892, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33660361

RESUMO

The kinetochore is essential for the accurate segregation of sister chromosome in the eukaryote cell. Among the kinetochore subunits, five proteins CENP-O/P/U/Q/R form a stable complex, referred to as CENP-O class, and are required for proper kinetochore function. Although the function and structure of yeast COMA complex (CENP-O/P/U/Q homologs) have been revealed extensively, the assembly mechanism and detail interactions among human CENP-O class are significantly different and remain largely unclear. Here, we identified the fragment (residues 241-360) of CENP-U and the C-terminal half of CENP-Q are essential to form a hetero-complex and interact with CENP-O/P sub-complex in vitro. We for the first time showed that CENP-R does not directly interact with CENP-O/P in vitro, but indeed interact with CENP-U and CENP-Q. Furthermore, both the N- and C-terminus of CENP-R are required for the interaction with CENP-U and CENP-Q. Our research pinpointed a novel interaction pattern that might shed light on the assembly mechanism of vertebrate CENP-O class.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Cromossômicas não Histona/química , Células HeLa , Humanos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
4.
Transl Oncol ; 34: 101691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207381

RESUMO

Lung adenocarcinoma (LUAD) is the most prevalent form of lung cancer globally, and its treatment remains a significant challenge. Therefore, it is crucial to comprehend the microenvironment to improve therapy and prognosis urgently. In this study, we utilized bioinformatic methods to analyze the transcription expression profile of patient samples with complete clinical information from the TCGA-LUAD datasets. To validate our findings, we also analyzed the Gene Expression Omnibus (GEO) datasets. The super-enhancer (SE) was visualized using the peaks of the H3K27ac and H3K4me1 ChIP-seq signal, which were identified by the Integrative Genomics Viewer (IGV). To further investigate the role of Centromere protein O (CENPO) in LUAD, we conducted various assays including Western blot, qRT-PCR, flow cytometry, wound healing and transwell assays to assess the cell functions of CENPO in vitro. The overexpression of CENPO is linked to a poor prognosis in patients with LUAD. Strong signal peaks of H3K27ac and H3K4me1 were also observed near the predicted SE regions of CENPO. CENPO was found to be positively associated with the expression levels of immune checkpoints and drug IC50 value (Roscovitine and TGX221), but negatively associated with the fraction levels of several immature cells and drug IC50 value (CCT018159, GSK1904529A, Lenaildomide, and PD-173074). Additionally, CENPO-associated prognostic signature (CPS) was identified as an independent risk factor. The high-risk group for LUAD is identified based on CPS enrichment, which involved not only endocytosis that transfers mitochondria to promote cell survival in response to chemotherapy but also cell cycle promotion that leads to drug resistance. The removal of CENPO significantly suppressed metastasis and induced arrest and apoptosis of LUAD cells. The involvement of CENPO in the immunosuppression of LUAD provides a prognostic signature for LUAD patients.

5.
Discov Oncol ; 13(1): 8, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201521

RESUMO

Colorectal cancer (CRC) is considered to be a leading cause of cancer-related death. Centromere protein O (CENPO) can prevent the separation of sister chromatids and cell death after spindle injury. Nevertheless, the role of CENPO in CRC has not been reported. The expression level of CENPO in CRC was revealed by TCGA database and immunohistochemical (IHC) staining. Subsequently, the loss-of-function assays were performed to identified the role of CENPO in CRC in vitro and in vivo. Our data demonstrated that CENPO was highly expressed in CRC. The expression of CENPO was positively correlated with the deterioration of CRC. Moreover, CENPO knockdown inhibited the malignant phenotypes of CRC cells, which was characterized by slowed proliferation, cycle repression at G2, promotion of apoptosis, reduced migration and weakened tumorigenesis. Furthermore, CENPO knockdown downregulated the expression of N-cadherin, Vimentin, Snail, CCND1, PIK3CA and inhibited AKT phosphorylation in CRC cells. Moreover, the function of CENPO in regulating proliferation and apoptosis depended on p53. In summary, CENPO may play a promoting role in CRC through the epithelial mesenchymal transition (EMT) and PI3K/AKT signaling pathway, which can be regarded as a molecular therapeutic target for CRC.

6.
J Fungi (Basel) ; 8(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135658

RESUMO

Inositol pyrophosphates (IPPs) comprise a specific class of signaling molecules that regulate central biological processes in eukaryotes. The conserved Vip1/PPIP5K family controls intracellular IP8 levels, the highest phosphorylated form of IPPs present in yeasts, as it has both inositol kinase and pyrophosphatase activities. Previous studies have shown that the fission yeast S. pombe Vip1/PPIP5K family member Asp1 impacts chromosome transmission fidelity via the modulation of spindle function. We now demonstrate that an IP8 analogue is targeted by endogenous Asp1 and that cellular IP8 is subject to cell cycle control. Mitotic entry requires Asp1 kinase function and IP8 levels are increased at the G2/M transition. In addition, the kinetochore, the conductor of chromosome segregation that is assembled on chromosomes is modulated by IP8. Members of the yeast CCAN kinetochore-subcomplex such as Mal2/CENP-O localize to the kinetochore depending on the intracellular IP8-level: higher than wild-type IP8 levels reduce Mal2 kinetochore targeting, while a reduction in IP8 has the opposite effect. As our perturbations of the inositol polyphosphate and IPP pathways demonstrate that kinetochore architecture depends solely on IP8 and not on other IPPs, we conclude that chromosome transmission fidelity is controlled by IP8 via an interplay between entry into mitosis, kinetochore architecture, and spindle dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA