Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 762
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2217081120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812199

RESUMO

Carbon capture is one of the essential low-carbon technologies required to achieve societal climate goals at the lowest cost. Covalent organic frameworks (COFs) are promising adsorbents for CO2 capture because of their well-defined porosity, large surface area, and high stability. Current COF-based CO2 capture is mainly based on a physisorption mechanism, exhibiting smooth and reversible sorption isotherms. In the present study, we report unusual CO2 sorption isotherms featuring one or more tunable hysteresis steps with metal ion (Fe3+, Cr3+, or In3+)-doped Schiff-base two-dimensional (2D) COFs (Py-1P, Py-TT, and Py-Py) as adsorbents. Synchrotron X-ray diffraction, spectroscopic and computational studies indicate that the sharp adsorption steps in the isotherm originate from the insertion of CO2 between the metal ion and the N atom of the imine bond on the inner pore surface of the COFs as the CO2 pressure reaches threshold values. As a result, the CO2 adsorption capacity of the ion-doped Py-1P COF is increased by 89.5% compared with that of the undoped Py-1P COF. This CO2 sorption mechanism provides an efficient and straightforward approach to enhancing the CO2 capture capacity of COF-based adsorbents, yielding insights into developing chemistry for CO2 capture and conversion.

2.
Small ; 20(38): e2402529, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38767079

RESUMO

Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2-responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2-fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro-crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture-release cycles up to 8 times. Furthermore, the polyethyleneimine-acrylamide-calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine-tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.

3.
Small ; 20(5): e2305533, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786306

RESUMO

CO2 capture and conversion technology are highly promising technologies that definitely play a part in the journey towards carbon neutrality. Releasing CO2 by mild stimulation and the development of high efficiency catalytic processes are urgently needed. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the enhancement of CO2 capture and conversion process. In this review, the recent progress of magnetic field-enhanced CO2 capture and conversion is comprehensively summarized. The theoretical fundamentals of magnetic field on CO2 adsorption, release and catalytic reduction process are discussed, including the magnetothermal, magnetohydrodynamic, spin selection, Lorentz forces, magnetoresistance and spin relaxation effects. Additionally, a thorough review of the current progress of the enhancement strategies of magnetic field coupled with a variety of fields (including thermal, electricity, and light) is summarized in the aspect of CO2 related process. Finally, the challenges and prospects associated with the utilization of magnetic field-assisted techniques in the construction of CO2 capture and conversion systems are proposed. This review offers a reference value for the future design of catalysts, mechanistic investigations, and practical implementation for magnetic field enhanced CO2 capture and conversion.

4.
Small ; : e2401422, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118560

RESUMO

Silica-supported amine absorbents, including materials produced by tethering aminosilanes or infusion of poly(ethyleneimine), represent a promising class of materials for CO2 capture applications, including direct air and point source capture. Various silica surface treatments and functionalization strategies are explored to enhance stability and CO2 uptake in amine-based solid sorbent systems. Here, the synthesis and characterization of novel vinyltrimethoxysilane-treated Santa Barbara Amorphous-15 (SBA-15) supports and the corresponding enhancement in CO2 uptake compared to various SBA-15-based control supports are presented. The relationship between CO2 diffusion and amine efficiency in these systems is explored using a previously reported kinetic model. The synthesized materials are characterized with CO2 and H2O isotherms, diffuse reflectance infrared Fourier transform spectroscopy, 1H T1-T2 relaxation correlation NMR, and rapid thermal cycling experiments. The novel support materials are shown to enable high amine efficiencies, approaching a fourfold improvement over standard SBA-15-supported amines, while simultaneously exhibiting excellent stability when cycled rapidly under humid conditions. As the poly(ethyleneimine) loadings are held constant across the various samples, enhancements in CO2 uptake are attributed to differences in the way the poly(ethyleneimine) interacts with the support surface.

5.
Small ; : e2406165, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126365

RESUMO

The calcium looping technology employing CaO-based sorbents is pivotal for capturing CO2 from flue gas. However, the intrinsic low thermodynamic stability of CaO-based sorbents and the requisite molding step induce severe sintering issues, diminishing their cyclic stability. Herein, a high-entropy fluorite oxide (HEFO) inert stabilizer premised on entropy stabilization and synergistic effect strategies is introduced. HEFO-modified, CaO-based sorbent pellets are synthesized via a rapid cigarette butt-assisted combustion process (15 min) combined with the graphite molding method. Post-multiple cycles, their CO2 capture capacity reaches 0.373 g g-1, which is 2.6-fold superior to that of pure CaO, demonstrating markedly enhanced anti-sintering properties. First, the subtle morphological and crystallographic modifications suggest that the inherent entropy stability of HEFO imparts robust thermal resistance. Concurrently, the disordered structure of single-phase HEFO exhibits a high affinity for CaO, resulting in an interface binding energy of -1.83 eV, in sharp contrast to the -0.112 eV of pure CaO, thereby restricting CaO migration. Additionally, the multi-element synergistic effect of HEFO reduces the energy barrier by 0.15 eV, leading to a 40% and 140% increase in carbonation and calcination rates, respectively. This work presents highly efficient and rapidly synthesized CaO-based sorbent pellets, showcasing promising potential for industrial application.

6.
Small ; 20(36): e2401156, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38686695

RESUMO

In this work, a new type of multifunctional materials (MFMs) called self-regenerative Ni-doped CaTiO3/CaO is introduced for the integrated CO2 capture and dry reforming of methane (ICCDRM). These materials consist of a catalytically active Ni-doped CaTiO3 and a CO2 sorbent, CaO. The article proposes a concept where the Ni catalyst can be regenerated in situ, which is crucial for ICCDRM. Exsolved Ni nanoparticles are evenly distributed on the surface of CaTiO3 under H2 or CH4, and are re-dispersed back into the CaTiO3 lattice under CO2. The Ni-doped CaTiO3/CaO MFMs show stable CO2 capture capacity and syngas productivity for 30 cycles of ICCDRM. The presence of CaTiO3 between CaO grains prevents CaO/CaCO3 thermal sintering during carbonation and decarbonation. Moreover, the strong interaction of CaTiO3 with exsolved Ni mitigates severe accumulation of coke deposition. This concept can be useful for developing MFMs with improved properties that can advance integrated carbon capture and conversion.

7.
Metab Eng ; 86: 115-123, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313109

RESUMO

Cyanobacteria show great promise as autotrophic hosts for the renewable biosynthesis of useful chemicals from CO2 and light. While they can efficiently fix CO2, cyanobacteria are generally outperformed by heterotrophic production hosts in terms of productivity and titer. Photomixotrophy, or co-utilization of sugars and CO2 as carbon feedstocks, has been implemented in cyanobacteria to greatly improve productivity and titers of several chemical products. We introduced xylose photomixotrophy to a 2,3-butanediol producing strain of Synechococcus elongatus PCC 7942 and characterized the effect of gene knockouts, changing pathway expression levels, and changing growth conditions on chemical production. Interestingly, 2,3-butanediol production was almost completely inhibited in the absence of added CO2. Untargeted metabolomics implied that RuBisCO was a significant bottleneck, especially at ambient CO2 levels, restricting the supply of lower glycolysis metabolites needed for 2,3-butanediol production. The dependence of the strain on elevated CO2 levels suggests some practical limitations on how xylose photomixotrophy can be efficiently carried out in S. elongatus.

8.
Appl Environ Microbiol ; 90(5): e0026824, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619268

RESUMO

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Assuntos
Dióxido de Carbono , Methanobacteriaceae , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , RNA Ribossômico 16S/genética , Genoma Arqueal , Filogenia , Fenótipo , Águas Residuárias/microbiologia , Metano/metabolismo , Nutrientes/metabolismo
9.
Chemistry ; 30(49): e202400874, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853144

RESUMO

MXenes, a class of two-dimensional transition metal carbides, nitrides, and carbonitrides, have garnered significant attention due to their remarkable potential for energy storage, electrocatalysis, and gas separation applications. The fabrication processes of MXene involve building up the MXene structure from constituent elements and the selective elimination of M-A bonds from the precursor MAX. However, considerable efforts are still required to design and develop efficient MXene-based technologies. This review article aims to briefly analyse the synthesis methods employed for MXene production, ranging from direct synthesis and conventional chemical wet etching approach to the more recent molten salt etching technique. The review highlights the advancements made in achieving precise control over the terminal groups, which is paramount for tailoring the properties of MXenes for specific applications. Furthermore, the potential of MXene-based materials for carbon capture applications, particularly in developing advanced adsorbents, is emphasized. The in-depth examination of MXene synthesis techniques and their implications for carbon capture applications provides a solid foundation for developing and optimizing these promising materials.

10.
Chemistry ; : e202402437, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110634

RESUMO

Two water-stable indium metal-organic frameworks, (NH2Me2)3[In3(BTB)4] ⋅ 12DMA ⋅ 4.5H2O (In-MOF-1) and (NH2Me2)9[In9O6(BTB)8(H2O)4(DMSO)4] ⋅ 27DMSO ⋅ 21H2O (In-MOF-2) (BTB=4,4',4''-benzene-1,3,5-tribenzoate) with 3D interpenetrated structure has been constructed by regulating solvents. Structure analysis revealed that In-MOF-1 has a three-dimensional (3D) structure with a single metal core, while In-MOF-2 features an octahedron cage constructed by three kinds of metal clusters to further form a 3D structure. The fluorescence investigations showed that In-MOF-1 and In-MOF-2 are potential MOF-based fluorescent sensors to detect acetone and Fe3+ ions in EtOH or water with high sensitivity, excellent selectivity, recyclability and a low limit of detection. Moreover, the fluorescence mechanisms of In-MOF-1 and In-MOF-2 toward acetone and Fe3+ ions were further explained. In addition, In-MOF-2 has higher thermal and framework stability than In-MOF-1. The activated In-MOF-2 presents a high BET surface area of 998.82 m2g-1 and a pore size distribution of 8 to 16 Å. At the same time, In-MOF-2 exhibits high selective CO2 adsorption for CO2/CH4 and CO2/N2, respectively. Furthermore, the adsorption sites and adsorption isotherms were predicted using grand canonical Monte Carlo (GCMC) simulations, and the adsorption energy of the lowest-energy adsorption configuration was calculated using molecular dynamics (MD) simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA