Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 19(6): 463-480, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573151

RESUMO

The conserved oligomeric Golgi (COG) complex controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle trafficking within the Golgi. Human COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). To gain better understanding of COG-CDGs, we compared COG knockout cells with cells deficient to 2 key enzymes, Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase and uridine diphosphate-glucose 4-epimerase (GALE), which contribute to proper N- and O-glycosylation. While all knockout cells share similar defects in glycosylation, these defects only account for a small fraction of observed COG knockout phenotypes. Glycosylation deficiencies were not associated with the fragmented Golgi, abnormal endolysosomes, defective sorting and secretion or delayed retrograde trafficking, indicating that these phenotypes are probably not due to hypoglycosylation, but to other specific interactions or roles of the COG complex. Importantly, these COG deficiency specific phenotypes were also apparent in COG7-CDG patient fibroblasts, proving the human disease relevance of our CRISPR knockout findings. The knowledge gained from this study has important implications, both for understanding the physiological role of COG complex in Golgi homeostasis in eukaryotic cells, and for better understanding human diseases associated with COG/Golgi impairment.


Assuntos
Complexo de Golgi/metabolismo , Açúcares/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Linhagem Celular , Glicosilação , Células HEK293 , Humanos , Fenótipo , Transporte Proteico/fisiologia
2.
Biochem Biophys Res Commun ; 528(3): 447-452, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32499114

RESUMO

The conserved oligomeric Golgi (COG) complex, which consists of eight subunits named COG1-COG8, is highly conserved with homologous subunits present in most eukaryotic species. In yeast and mammalian, the COG complex has been implicated in the tethering of retrograde intra-Golgi vesicles. Although homologs of COG subunits have been identified in Arabidopsis, the functions of the complex and its subunits remain to be fully elucidated. In this study, we have utilized genetic and cytologic approaches to characterize the role of the COG6 subunit. We showed that a mutation in COG6 caused male transmission defect due to aberrant pollen tube growth. At the subcellular level, Golgi bodies exhibited altered morphology in cog6 pollen and cell wall components were incorrectly deposited in pollen tubes. COG6 fused to green fluorescent protein (GFP), which complemented the aberrant growth of cog6 pollen tubes, was localized to the Golgi apparatus. We propose that COG6, as a subunit of the COG complex, modulates Golgi morphology and vesicle trafficking homeostasis during pollen tube growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Complexo de Golgi/genética , Complexo de Golgi/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutação , Plantas Geneticamente Modificadas , Tubo Polínico/genética
3.
J Inherit Metab Dis ; 43(4): 701-711, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31804708

RESUMO

In the rapidly growing group of rare genetic disorders, data scarcity demands an intelligible use of available data, in order to improve understanding of underlying pathophysiology. We hypothesize, based on the principle that clinical similarities may be indicative of shared pathophysiology, that determining phenotypic specificity could provide unsuspected insights in pathophysiology of rare genetic disorders. We explored our hypothesis by studying subunit deficiencies of the conserved oligomeric Golgi (COG) complex, a subgroup of congenital disorders of glycosylation (CDG). In this systematic data assessment, all 45 reported patients with COG-CDG were included. The vocabulary of the Human Phenotype Ontology was used to annotate all phenotypic features and to assess occurrence in other genetic disorders. Gene occurrence ratios were calculated by dividing the frequency in the patient cohort over the number of associated genes, according to the Human Phenotype Ontology. Prioritisation based on phenotypic specificity was highly informative and captured phenotypic features commonly associated with glycosylation disorders. Moreover, it captured features not seen in any other glycosylation disorder, among which episodic fever, likely reflecting underappreciated other cellular functions of the COG complex. Interestingly, the COG complex was recently implicated in the autophagy pathway, as are more than half of the genes underlying disorders that present with episodic fever. This suggests that whereas many phenotypic features in these patients are caused by disrupted glycosylation, episodic fever might be caused by disrupted autophagy. Thus, we here demonstrate support for our hypothesis that determining phenotypic specificity could facilitate understanding of pathophysiology in rare genetic disorders.


Assuntos
Defeitos Congênitos da Glicosilação/etiologia , Complexos Multiproteicos/genética , Mutação , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Defeitos Congênitos da Glicosilação/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Complexos Multiproteicos/química , Fenótipo
4.
Traffic ; 18(9): 580-589, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28627726

RESUMO

The Arl3-Arl1 GTPase cascade plays important roles in vesicle trafficking at the late Golgi and endosomes. Subunits of the conserved oligomeric Golgi (COG) complex, a tethering factor, are important for endosome-to-Golgi transport and contribute to the efficient functioning of the cytoplasm-to-vacuole targeting (Cvt) pathway, a well-known selective autophagy pathway. According to our findings, the Arl3-Arl1 GTPase cascade co-operates with Cog8 to regulate the Cvt pathway via Atg9 trafficking. arl3cog8Δ and arl1cog8Δ exhibit profound defects in aminopeptidase I maturation in rich medium. In addition, the Arl3-Arl1 cascade acts on the Cvt pathway via dynamic nucleotide binding. Furthermore, Atg9 accumulates at the late Golgi in arl3cog8Δ and arl1cog8Δ cells under normal growth conditions but not under starvation conditions. Thus, our results offer insight into the requirement for multiple components in the Golgi-endosome system to determine Atg9 trafficking at the Golgi, thereby regulating selective autophagy.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/metabolismo
5.
Cell Struct Funct ; 43(2): 119-127, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29899178

RESUMO

The Golgi apparatus is a central station for protein trafficking in eukaryotic cells. A widely accepted model of protein transport within the Golgi apparatus is cisternal maturation. Each cisterna has specific resident proteins, which are thought to be maintained by COPI-mediated transport. However, the mechanisms underlying specific sorting of these Golgi-resident proteins remain elusive. To obtain a clue to understand the selective sorting of vesicles between the Golgi cisterenae, we investigated the molecular arrangements of the conserved oligomeric Golgi (COG) subunits in yeast cells. Mutations in COG subunits cause defects in Golgi trafficking and glycosylation of proteins and are causative of Congenital Disorders of Glycosylation (CDG) in humans. Interactions among COG subunits in cytosolic and membrane fractions were investigated by co-immunoprecipitation. Cytosolic COG subunits existed as octamers, whereas membrane-associated COG subunits formed a variety of subcomplexes. Relocation of individual COG subunits to mitochondria resulted in recruitment of only a limited number of other COG subunits to mitochondria. These results indicate that COG proteins function in the forms of a variety of subcomplexes and suggest that the COG complex does not comprise stable tethering without other interactors.Key words: The Golgi apparatus, COG complex, yeast, membrane trafficking, multi-subunit tethering complex.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Humanos , Mapas de Interação de Proteínas , Subunidades Proteicas/metabolismo , Transporte Proteico
6.
New Phytol ; 213(3): 1052-1067, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27801942

RESUMO

Cortical microtubules (MTs) play a major role in the patterning of secondary cell wall (SCW) thickenings in tracheary elements (TEs) by determining the sites of SCW deposition. The EXO70A1 subunit of the exocyst secretory vesicle tethering complex was implicated to be important for TE development via the MT interaction. We investigated the subcellular localization of several exocyst subunits in the xylem of Arabidopsis thaliana and analyzed the functional significance of exocyst-mediated trafficking in TE development. Live cell imaging of fluorescently tagged exocyst subunits in TE using confocal microscopy and protein-protein interaction assays were performed to describe the role of the exocyst and its partners in TE development. In TEs, exocyst subunits were localized to the sites of SCW deposition in an MT-dependent manner. We propose that the mechanism of exocyst targeting to MTs involves the direct interaction of exocyst subunits with the COG2 protein. We demonstrated the importance of a functional exocyst subunit EXO84b for normal TE development and showed that the deposition of SCW constituents is partially compromised, possibly as a result of the mislocalization of secondary cellulose synthase in exocyst mutants. We conclude that the exocyst complex is an important factor bridging the pattern defined by cortical MTs with localized secretion of the SCW in developing TEs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Microtúbulos/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Arabidopsis/ultraestrutura , Diferenciação Celular , Membrana Celular/metabolismo , Parede Celular/metabolismo , Sequência Conservada , Glucosiltransferases/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Mutação/genética , Feixe Vascular de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Xilema/citologia , Xilema/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 111(44): 15762-7, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331899

RESUMO

The conserved oligomeric Golgi (COG) complex is required, along with SNARE and Sec1/Munc18 (SM) proteins, for vesicle docking and fusion at the Golgi. COG, like other multisubunit tethering complexes (MTCs), is thought to function as a scaffold and/or chaperone to direct the assembly of productive SNARE complexes at the sites of membrane fusion. Reflecting this essential role, mutations in the COG complex can cause congenital disorders of glycosylation. A deeper understanding of COG function and dysfunction will likely depend on elucidating its molecular structure. Despite some progress toward this goal, including EM studies of COG lobe A (subunits 1-4) and higher-resolution structures of portions of Cog2 and Cog4, the structures of COG's eight subunits and the principles governing their assembly are mostly unknown. Here, we report the crystal structure of a complex between two lobe B subunits, Cog5 and Cog7. The structure reveals that Cog5 is a member of the complexes associated with tethering containing helical rods (CATCHR) fold family, with homology to subunits of other MTCs including the Dsl1, exocyst, and Golgi-associated retrograde protein (GARP) complexes. The Cog5-Cog7 interaction is analyzed in relation to the Dsl1 complex, the only other CATCHR-family MTC for which subunit interactions have been characterized in detail. Biochemical and functional studies validate the physiological relevance of the observed Cog5-Cog7 interface, indicate that it is conserved from yeast to humans, and demonstrate that its disruption in human cells causes defects in trafficking and glycosylation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Complexos Multiproteicos/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cristalografia por Raios X , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
8.
J Cell Sci ; 127(Pt 13): 2825-39, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24806965

RESUMO

Searching and evaluating the Human Protein Atlas for transmembrane proteins enabled us to identify an integral membrane protein, TMEM115, that is enriched in the Golgi complex. Biochemical and cell biological analysis suggested that TMEM115 has four candidate transmembrane domains located in the N-terminal region. Both the N- and C-terminal domains are oriented towards the cytoplasm. Immunofluorescence analysis supports that TMEM115 is enriched in the Golgi cisternae. Functionally, TMEM115 knockdown or overexpression delays Brefeldin-A-induced Golgi-to-ER retrograde transport, phenocopying cells with mutations or silencing of the conserved oligomeric Golgi (COG) complex. Co-immunoprecipitation and in vitro binding experiments reveals that TMEM115 interacts with the COG complex, and might self-interact to form dimers or oligomers. A short region (residues 206-229) immediately to the C-terminal side of the fourth transmembrane domain is both necessary and sufficient for Golgi targeting. Knockdown of TMEM115 also reduces the binding of the lectins peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA), suggesting an altered O-linked glycosylation profile. These results establish that TMEM115 is an integral membrane protein of the Golgi stack regulating Golgi-to-ER retrograde transport and is likely to be part of the machinery of the COG complex.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
9.
Traffic ; 14(10): 1065-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23865579

RESUMO

Multiple mutations in different subunits of the tethering complex Conserved Oligomeric Golgi (COG) have been identified as a cause for Congenital Disorders of Glycosylation (CDG) in humans. Yet, the mechanisms by which COG mutations induce the pleiotropic CDG defects have not been fully defined. By detailed analysis of Cog8 deficiency in either HeLa cells or CDG-derived fibroblasts, we show that Cog8 is required for the assembly of both the COG complex and the Golgi Stx5-GS28-Ykt6-GS15 and Stx6-Stx16-Vti1a-VAMP4 SNARE complexes. The assembly of these SNARE complexes is also impaired in cells derived from a Cog7-deficient CDG patient. Likewise, the integrity of the COG complex is also impaired in Cog1-, Cog4- and Cog6-depleted cells. Significantly, deficiency of Cog1, Cog4, Cog6 or Cog8 distinctly influences the production of COG subcomplexes and their Golgi targeting. These results shed light on the structural organization of the COG complex and its subcellular localization, and suggest that its integrity is required for both tethering of transport vesicles to the Golgi apparatus and the assembly of Golgi SNARE complexes. We propose that these two key functions are generally and mechanistically impaired in COG-associated CDG patients, thereby exerting severe pleiotropic defects.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Complexo de Golgi/metabolismo , Proteínas SNARE/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Defeitos Congênitos da Glicosilação/genética , Cricetulus , Fibroblastos/metabolismo , Glicosilação , Complexo de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Mutação , Subunidades Proteicas , Transporte Proteico , Proteínas SNARE/genética , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
10.
Clin Genet ; 87(5): 455-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784932

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intra-Golgi retrograde trafficking, and mutations in six of its eight subunits have been reported in congenital disorders of glycosylation (CDG). Here we report a patient showing severe acquired microcephaly, psychomotor retardation, seizures, liver dysfunction, hypocupremia, and hypoceruloplasminemia. Analysis of his serum glycoproteins revealed defects in both sialylation and galactosylation of glycan termini. Trio-based whole-exome sequencing identified two heterozygous mutations in COG2: a de novo frameshift mutation [c.701dup (p.Tyr234*)] and a missense mutation [c.1900T > G (p.Trp634Gly)]. Sequencing of cloned reverse-transcription polymerase chain reaction (RT-PCR) products revealed that both mutations were located on separate alleles, as expected, and that the mutant transcript harboring the frameshift mutation underwent degradation. The c.1900T > G (p.Trp634Gly) mutation is located in a domain highly conserved among vertebrates and was absent from both the public database and our control exomes. Protein expression of COG2, along with COG3 and COG4, was decreased in fibroblasts from the patient. Our data strongly suggest that these compound heterozygous mutations in COG2 are causative of CDG.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Defeitos Congênitos da Glicosilação/genética , Complexo de Golgi/genética , Mutação , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Criança , Defeitos Congênitos da Glicosilação/diagnóstico , Exoma , Expressão Gênica , Glicosilação , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Fenótipo , Transferrina/metabolismo
11.
Fungal Genet Biol ; 73: 69-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312861

RESUMO

We have described two Aspergillus nidulans gene mutations, designated podB1 (polarity defective) and swoP1 (swollen cell), which cause temperature-sensitive defects during polarization. Mutant strains also displayed unevenness and abnormal thickness of cell walls. Un-polarized or poorly-polarized mutant cells were capable of establishing normal polarity after a shift to a permissive temperature, and mutant hyphae shifted from permissive to restrictive temperature show wall and polarity abnormalities in subsequent growth. The mutated genes (podB=AN8226.3; swoP=AN7462.3) were identified as homologues of COG2 and COG4, respectively, each predicted to encode a subunit of the multi-protein COG (Conserved Oligomeric Golgi) Complex involved in retrograde vesicle trafficking in the Golgi apparatus. Down-regulation of COG2 or COG4 resulted in abnormal polarization and cell wall staining. The GFP-tagged COG2 and COG4 homologues displayed punctate, Golgi-like localization. Lectin-blotting indicated that protein glycosylation was altered in the mutant strains compared to the wild type. A multicopy expression experiment showed evidence for functional interactions between the homologues COG2 and COG4 as well as between COG2 and COG3. To date, this work is the first regarding a functional role of the COG proteins in the development of a filamentous fungus.


Assuntos
Aspergillus nidulans/genética , Polaridade Celular/genética , Proteínas Fúngicas/genética , Complexo de Golgi/metabolismo , Mutação , Sequência de Aminoácidos , Aspergillus nidulans/metabolismo , Parede Celular/genética , Parede Celular/ultraestrutura , Proteínas Fúngicas/metabolismo , Glicosilação , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
12.
Viruses ; 16(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400072

RESUMO

To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Poliomielite , Humanos , Proteoglicanas de Heparan Sulfato , Internalização do Vírus , Receptores Virais/genética , Proteínas de Transporte
13.
Methods Mol Biol ; 2557: 365-390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512227

RESUMO

Conserved oligomeric Golgi (COG) complex orchestrates intra-Golgi retrograde trafficking and glycosylation of macromolecules, but the detailed mechanism of COG action is unknown. Previous studies employed prolonged protein knockout and knockdown approaches which may potentially generate off-target and indirect mutant phenotypes. To achieve a fast depletion of COG subunits in human cells, the auxin-inducible degradation system was employed. This method of protein regulation allows a very fast and efficient depletion of COG subunits, which provides the ability to accumulate COG complex dependent (CCD) vesicles and investigate initial cellular defects associated with the acute depletion of COG complex subunits. This protocol is applicable to other vesicle tethering complexes and can be utilized to investigate anterograde and retrograde intracellular membrane trafficking pathways.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Complexo de Golgi , Animais , Humanos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , Glicosilação , Transporte Proteico/fisiologia , Ácidos Indolacéticos/metabolismo , Mamíferos/metabolismo
14.
Front Cell Dev Biol ; 9: 665289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055798

RESUMO

As the central hub in the secretory and endocytic pathways, the Golgi apparatus continually receives the flow of cargos and serves as a major processing station in the cell. Due to its dynamic nature, a sophisticated and constantly remodeling mechanism needs to be set up to maintain the Golgi architecture and function in the non-stop trafficking of proteins and lipids. Abundant evidence has been accumulated that a well-organized Golgi structure is required for its proper functions, especially protein glycosylation. Remarkably, altered glycosylation has been a hallmark of most cancer cells. To understand the causes of Golgi defects in cancer, efforts have been made to characterize Golgi structural proteins under physiological and pathological conditions. This review summarizes the current knowledge of crucial Golgi structural proteins and their connections with tumor progression. We foresee that understanding the Golgi structural and functional defects may help solve the puzzle of whether glycosylation defect is a cause or effect of oncogenesis.

15.
Elife ; 102021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821548

RESUMO

Protein glycosylation in the Golgi is a sequential process that requires proper distribution of transmembrane glycosyltransferase enzymes in the appropriate Golgi compartments. Some of the cytosolic machinery required for the steady-state localization of some Golgi enzymes are known but existing models do not explain how many of these enzymes are localized. Here, we uncover the role of an integral membrane protein in yeast, Erd1, as a key facilitator of Golgi glycosyltransferase recycling by directly interacting with both the Golgi enzymes and the cytosolic receptor, Vps74. Loss of Erd1 function results in mislocalization of Golgi enzymes to the vacuole/lysosome. We present evidence that Erd1 forms an integral part of the recycling machinery and ensures productive recycling of several early Golgi enzymes. Our work provides new insights on how the localization of Golgi glycosyltransferases is spatially and temporally regulated, and is finely tuned to the cues of Golgi maturation.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosilação , Complexo de Golgi
16.
Front Genet ; 12: 733048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603392

RESUMO

Conserved Oligomeric Golgi (COG) is an octameric protein complex that orchestrates intra-Golgi trafficking of glycosylation enzymes. Over a hundred individuals with 31 different COG mutations have been identified until now. The cellular phenotypes and clinical presentations of COG-CDGs are heterogeneous, and patients primarily represent neurological, skeletal, and hepatic abnormalities. The establishment of a cellular COG disease model will benefit the molecular study of the disease, explaining the detailed sequence of the interplay between the COG complex and the trafficking machinery. Moreover, patient fibroblasts are not a good representative of all the organ systems and cell types that are affected by COG mutations. We developed and characterized cellular models for human COG4 mutations, specifically in RPE1 and HEK293T cell lines. Using a combination of CRISPR/Cas9 and lentiviral transduction technologies, both myc-tagged wild-type and mutant (G516R and R729W) COG4 proteins were expressed under the endogenous COG4 promoter. Constructed isogenic cell lines were comprehensively characterized using biochemical, microscopy (superresolution and electron), and proteomics approaches. The analysis revealed similar stability and localization of COG complex subunits, wild-type cell growth, and normal Golgi morphology in all three cell lines. Importantly, COG4-G516R cells demonstrated increased HPA-647 binding to the plasma membrane glycoconjugates, while COG4-R729W cells revealed high GNL-647 binding, indicating specific defects in O- and N-glycosylation. Both mutant cell lines express an elevated level of heparin sulfate proteoglycans. Moreover, a quantitative mass-spectrometry analysis of proteins secreted by COG-deficient cell lines revealed abnormal secretion of SIL1 and ERGIC-53 proteins by COG4-G516R cells. Interestingly, the clinical phenotype of patients with congenital mutations in the SIL1 gene (Marinesco-Sjogren syndrome) overlaps with the phenotype of COG4-G516R patients (Saul-Wilson syndrome). Our work is the first compressive study involving the creation of different COG mutations in different cell lines other than the patient's fibroblast. It may help to address the underlying cause of the phenotypic defects leading to the discovery of a proper treatment guideline for COG-CDGs.

17.
Viruses ; 12(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629851

RESUMO

Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1-COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Orthopoxvirus/fisiologia , Infecções por Poxviridae/metabolismo , Infecções por Poxviridae/virologia , Internalização do Vírus , Proteínas Adaptadoras de Transporte Vesicular/genética , Glicosilação , Complexo de Golgi , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Mutação , Orthopoxvirus/genética , Infecções por Poxviridae/genética
18.
Biochim Biophys Acta Gen Subj ; 1864(11): 129694, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32730773

RESUMO

The Conserved Oligomeric Golgi (COG) complex, a multi-subunit vesicle tethering complex of the CATCHR (Complexes Associated with Tethering Containing Helical Rods) family, controls several aspects of cellular homeostasis by orchestrating retrograde vesicle traffic within the Golgi. The COG complex interacts with all key players regulating intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. In cells, COG deficiencies result in the accumulation of non-tethered COG-complex dependent (CCD) vesicles, dramatic morphological and functional abnormalities of the Golgi and endosomes, severe defects in N- and O- glycosylation, Golgi retrograde trafficking, sorting and protein secretion. In humans, COG mutations lead to severe multi-systemic diseases known as COG-Congenital Disorders of Glycosylation (COG-CDG). In this report, we review the current knowledge of the COG complex and analyze COG-related trafficking and glycosylation defects in COG-CDG patients.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Complexo de Golgi/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Transporte Biológico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Complexo de Golgi/genética , Complexo de Golgi/patologia , Humanos , Complexos Multiproteicos/genética , Mutação , Mapas de Interação de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
19.
Front Plant Sci ; 11: 564495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262774

RESUMO

The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A. COGs5-8 compose Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p [alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1) and functions in resistance. The study presented here provides a functional analysis of the Glycine max COG complex. The analysis has identified two paralogs of each COG gene. Functional transgenic studies demonstrate at least one paralog of each COG gene family functions in G. max during H. glycines resistance. Furthermore, treatment of G. max with the bacterial effector harpin, known to function in effector triggered immunity (ETI), leads to the induced transcription of at least one member of each COG gene family that has a role in H. glycines resistance. In some instances, altered COG gene expression changes the relative transcript abundance of syntaxin 31. These results indicate that the G. max COG complex functions through processes involving ETI leading to H. glycines resistance.

20.
Front Cell Dev Biol ; 7: 118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31334232

RESUMO

The conserved oligomeric complex (COG) is a multi-subunit vesicle tethering complex that functions in retrograde trafficking at the Golgi. We have previously demonstrated that the formation of enlarged endo-lysosomal structures (EELSs) is one of the major glycosylation-independent phenotypes of cells depleted for individual COG complex subunits. Here, we characterize the EELSs in HEK293T cells using microscopy and biochemical approaches. Our analysis revealed that the EELSs are highly acidic and that vATPase-dependent acidification is essential for the maintenance of this enlarged compartment. The EELSs are accessible to both trans-Golgi enzymes and endocytic cargo. Moreover, the EELSs specifically accumulate endolysosomal proteins Lamp2, CD63, Rab7, Rab9, Rab39, Vamp7, and STX8 on their surface. The EELSs are distinct from lysosomes and do not accumulate active Cathepsin B. Retention using selective hooks (RUSH) experiments revealed that biosynthetic cargo mCherry-Lamp1 reaches the EELSs much faster as compared to both receptor-mediated and soluble endocytic cargo, indicating TGN origin of the EELSs. In support to this hypothesis, EELSs are enriched with TGN specific lipid PI4P. Additionally, analysis of COG4/VPS54 double KO cells revealed that the activity of the GARP tethering complex is necessary for EELSs' accumulation, indicating that protein mistargeting and the imbalance of Golgi-endosome membrane flow leads to the formation of EELSs in COG-deficient cells. The EELSs are likely to serve as a degradative storage hybrid organelle for mistargeted Golgi enzymes and underglycosylated glycoconjugates. To our knowledge this is the first report of the formation of an enlarged hybrid endosomal compartment in a response to malfunction of the intra-Golgi trafficking machinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA