RESUMO
Mitoproteases are becoming recognized as key regulators of diverse mitochondrial functions, although their direct substrates are often difficult to discern. Through multi-omic profiling of diverse Saccharomyces cerevisiae mitoprotease deletion strains, we predicted numerous associations between mitoproteases and distinct mitochondrial processes. These include a strong association between the mitochondrial matrix octapeptidase Oct1p and coenzyme Q (CoQ) biosynthesis-a pathway essential for mitochondrial respiration. Through Edman sequencing and in vitro and in vivo biochemistry, we demonstrated that Oct1p directly processes the N terminus of the CoQ-related methyltransferase, Coq5p, which markedly improves its stability. A single mutation to the Oct1p recognition motif in Coq5p disrupted its processing in vivo, leading to CoQ deficiency and respiratory incompetence. This work defines the Oct1p processing of Coq5p as an essential post-translational event for proper CoQ production. Additionally, our data visualization tool enables efficient exploration of mitoprotease profiles that can serve as the basis for future mechanistic investigations.
Assuntos
Aminopeptidases/metabolismo , Metabolismo Energético , Metabolômica/métodos , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Aminopeptidases/genética , Estabilidade Enzimática , Genótipo , Metiltransferases/genética , Mutação , Fenótipo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Ubiquinona/genéticaRESUMO
Primary coenzyme Q10 (CoQ10 ; MIM# 607426) deficiencies are an emerging group of inherited mitochondrial disorders with heterogonous clinical phenotypes. Over a dozen genes are involved in the biosynthesis of CoQ10 , and mutations in several of these are associated with human disease. However, mutations in COQ5 (MIM# 616359), catalyzing the only C-methylation in the CoQ10 synthetic pathway, have not been implicated in human disease. Here, we report three female siblings of Iraqi-Jewish descent, who had varying degrees of cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, and cognitive disability. Whole-exome and subsequent whole-genome sequencing identified biallelic duplications in the COQ5 gene, leading to reduced levels of CoQ10 in peripheral white blood cells of all affected individuals and reduced CoQ10 levels in the only muscle tissue available from one affected proband. CoQ10 supplementation led to clinical improvement and increased the concentrations of CoQ10 in blood. This is the first report of primary CoQ10 deficiency caused by loss of function of COQ5, with delineation of the clinical, laboratory, histological, and molecular features, and insights regarding targeted treatment with CoQ10 supplementation.
Assuntos
Vias Biossintéticas/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Metiltransferases/deficiência , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/deficiência , Ubiquinona/análogos & derivados , Biópsia , Ataxia Cerebelar/dietoterapia , Ataxia Cerebelar/metabolismo , Variações do Número de Cópias de DNA , Suplementos Nutricionais , Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos/metabolismo , Metiltransferases/genética , Encefalomiopatias Mitocondriais/dietoterapia , Encefalomiopatias Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Músculos/patologia , Consumo de Oxigênio , Linhagem , Polimorfismo de Nucleotídeo Único , Irmãos , Ubiquinona/biossínteseRESUMO
BACKGROUND: The Coq protein complex assembled from several Coq proteins is critical for coenzyme Q6 (CoQ6) biosynthesis in yeast. Secondary CoQ10 deficiency is associated with mitochondrial DNA (mtDNA) mutations in patients. We previously demonstrated that carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) suppressed CoQ10 levels and COQ5 protein maturation in human 143B cells. METHODS: This study explored the putative COQ protein complex in human cells through two-dimensional blue native-polyacrylamide gel electrophoresis and Western blotting to investigate its status in 143B cells after FCCP treatment and in cybrids harboring the mtDNA mutation that caused myoclonic epilepsy with ragged-red fibers (MERRF) syndrome. Ubiquinol-10 and ubiquinone-10 levels were detected by high-performance liquid chromatography. Mitochondrial energy status, mRNA levels of various PDSS and COQ genes, and protein levels of COQ5 and COQ9 in cybrids were examined. RESULTS: A high-molecular-weight protein complex containing COQ5, but not COQ9, in the mitochondria was identified and its level was suppressed by FCCP and in cybrids with MERRF mutation. That was associated with decreased mitochondrial membrane potential and mitochondrial ATP production. Total CoQ10 levels were decreased under both conditions, but the ubiquinol-10:ubiquinone-10 ratio was increased in mutant cybrids. The expression of COQ5 was increased but COQ5 protein maturation was suppressed in the mutant cybrids. CONCLUSIONS: A novel COQ5-containing protein complex was discovered in human cells. Its destabilization was associated with reduced CoQ10 levels and mitochondrial energy deficiency in human cells treated with FCCP or exhibiting MERRF mutation. GENERAL SIGNIFICANCE: The findings elucidate a possible mechanism for mitochondrial dysfunction-induced CoQ10 deficiency in human cells.
Assuntos
Síndrome MERRF/metabolismo , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ubiquinona/análogos & derivados , Ataxia/genética , Ataxia/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular , DNA Mitocondrial/genética , Humanos , Síndrome MERRF/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Metiltransferases/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Mutação/efeitos dos fármacos , Mutação/genética , RNA Mensageiro/genética , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismoRESUMO
Coenzyme Q5 (COQ5), a C-methyltransferase, modifies coenzyme Q10 (COQ10) during biosynthesis and interacts with polyA-tail regulating zinc-finger protein ZC3H14 in neural development. Here, we present a fifth patient (a third family) worldwide with neurodevelopmental and physiological symptoms including COQ10 deficiency. Our patient harbors one novel c.681+1G>A and one recurrent p.Gly118Ser variant within COQ5. The patient's mRNA profile reveals multiple COQ5 splice-variants. Subsequently, we comprehensively described patient's clinical features as compared to phenotype and symptoms of other known congenital coenzyme Q5-linked cases. A core spectrum of COQ5-associated symptoms includes reduced COQ10 levels, intellectual disability, encephalopathy, cerebellar ataxia, cerebellar atrophy speech regression/dysarthria, short stature, and developmental delays. Our patient additionally displays dysmorphia, microcephaly, and regressive social faculties. These results formally establish causal association of biallelic COQ5 mutation with pathology, outline a core COQ5-linked phenotype, and identify mRNA mis-splicing as the molecular mechanism underlying all COQ5 variant-linked pathology to date.
Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/genética , Microcefalia/genéticaRESUMO
INTRODUCTION AND AIMS: The present study was conducted to determine the candidate genes involved in caspofungin (CAS) resistance in clinical isolates of Aspergillus flavus (A. flavus). MATERIALS AND METHODS: The antifungal susceptibility assay of the CAS was performed on 14 clinical isolates of A. flavus using the CLSI-M-38-A2 broth micro-dilution protocol. Since CAS had various potencies, the minimum effective concentration (MEC) of anidulafungin (AND) was also evaluated in the present study. The FKS1 gene sequencing was conducted to assess whether mutations occurred in the whole FKS1 gene as well as hot spot regions of the FKS1 gene of the two resistant isolates. A complementary DNA-amplified fragment length polymorphism (CDNA-AFLP) method was performed to investigate differential gene expression between the two resistant and two sensitive clinical isolates in the presence of CAS. Furthermore, quantitative real-time PCR (QRT-PCR) was utilized to determine the relative expression levels of the identified genes. RESULTS: No mutations were observed in the whole FKS1 gene hot spot regions of the FKS1 genes in the resistant isolates. A subset of two genes with known biological functions and four genes with unknown biological functions were identified in the CAS-resistant isolates using the CDNA-AFLP. The QRT-PCR revealed the down-regulation of the P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 in the CAS-resistant isolates, compared to the susceptible isolates. CONCLUSION: The findings showed that P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 might be involved in the CAS-resistance A. flavus clinical isolates. Moreover, a subset of genes was differentially expressed to enhance fungi survival in CAS exposure. Further studies are recommended to highlight the gene overexpression and knock-out experiments in A. flavus or surrogate organisms to confirm that these mentioned genes confer the CAS resistant A. flavus.
Assuntos
Antifúngicos , Aspergillus flavus , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus flavus/genética , Caspofungina , Equinocandinas/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Coenzyme Q (CoQ) is a redox-active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a multi-omic strategy to identify mRNAs that not only bind Puf3p but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Puf3p target: Puf3p regulates the abundance of Coq5p and prevents its detrimental hyperaccumulation, thereby enabling efficient CoQ production. More broadly, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly (pathways essential to prime mitochondrial biogenesis). Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis, and they demonstrate the power of multi-omics for defining genuine targets of RBPs.
Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocôndrias/enzimologia , Biogênese de Organelas , Fosforilação Oxidativa , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Ubiquinona/biossínteseRESUMO
Selenium metabolism has been an area of active research because of the essentiality as well as toxicity of selenium to animals and humans. Biologically based selenium volatilization has been a particular area of interest for its potential in making detoxification of selenium pollution highly effective. Recently, we have isolated a broccoli BoCOQ5-2 methyltransferase gene involved in the ubiquinone biosynthetic pathway and found that it promoted selenium volatilization in both bacteria and plants. The identification of BoCOQ5-2 methyltransferase as a facilitator of selenium volatilization showed that selenium metabolism is regulated by other metabolic processes outside of the selenium/sulfur metabolic pathway. The interplay between ubiquinone and selenium metabolisms is possible through the protective function of ubiquinone against oxidative stresses induced by selenium. This observation could lead to new approaches to enhance selenium phytoremediation.