RESUMO
AIM: Our goal was to compare conformal 3D (C3D) radiotherapy (RT), modulated intensity RT (IMRT), and volumetric modulated arc therapy (VMAT) planning techniques in treating pituitary adenomas. BACKGROUND: RT is important for managing pituitary adenomas. Treatment planning advances allow for higher radiation dosing with less risk of affecting organs at risk (OAR). MATERIALS AND METHODS: We conducted a 5-year retrospective review of patients with pituitary adenoma treated with external beam radiation therapy (C3D with flattening filter, flattening filter-free [FFF], IMRT, and VMAT). We compared dose-volume histogram data. For OARs, we recorded D2%, maximum, and mean doses. For planning target volume (PTV), we registered V95%, V107%, D95%, D98%, D50%, D2%, minimum dose, conformity index (CI), and homogeneity index (HI). RESULTS: Fifty-eight patients with pituitary adenoma were included. Target-volume coverage was acceptable for all techniques. The HI values were 0.06, IMRT; 0.07, VMAT; 0.08, C3D; and 0.09, C3D FFF (pâ¯<â¯0.0001). VMAT and IMRT provided the best target volume conformity (CI, 0.64 and 0.74, respectively; pâ¯<â¯0.0001). VMAT yielded the lowest doses to the optic pathway, lens, and cochlea. The position of the neck in extreme flexion showed that it helps in planning mainly with VMAT by allowing only one arc to be used and achieving the desired conformity, decreasing the treatment time, while allowing greater protection to the organs of risk using C3D, C3DFFF. CONCLUSIONS: Our results confirmed that EBRT in pituitary adenomas using IMRT, VMAT, C3D, C3FFF provide adequate coverage to the target. VMAT with a single arc or incomplete arc had a better compliance with desired dosimetric goals, such as target coverage and normal structures dose constraints, as well as shorter treatment time. Neck extreme flexion may have benefits in treatment planning for better preservation of organs at risk. C3D with extreme neck flexion is an appropriate treatment option when other treatment techniques are not available.
RESUMO
AIM: The purpose of this study was to review genitourinary (GU) and gastrointestinal (GI) toxicity associated with high-dose radiotherapy (RT) delivered with 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) or volumetric arc therapy (VMAT) following radical prostatectomy (RP). BACKGROUND: RP is a therapeutic option for the management of prostate cancer (PrCa). When assessing postoperative RT techniques for PrCa, the published literature focuses on patients treated with 2-dimensional conventional methods without reflecting the implementation of 3D-CRT, IMRT, or VMAT. MATERIALS AND METHODS: A total of 83 patients were included in this analysis; 30 patients received 3D-CRT, and 53 patients received IMRT/VMAT. Acute and late symptoms of the GU and lower GI tract were retrospectively graded according to the Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer radiation toxicity grading systems. The relapse failure-free rate and overall survival were also evaluated. RESULTS: The rate of acute GU toxicity was 9.4% vs. 13.3% for the IMRT/VMAT and 3D-CRT groups (pâ¯=â¯0.583). The 5-year actuarial rates of late GI toxicity for IMRT/VMAT and 3D-CRT treatments were 1.9% and 6.7%, respectively. The rate of late GU toxicity for the IMRT/VMAT and 3D-CRT treatment groups was 7.5% and 16.6%, respectively (pâ¯=â¯0.199). We found no association between acute or late toxicity and the RT technique in univariate and multivariate analyses. CONCLUSION: Postprostatectomy IMRT/VMAT and 3D-CRT achieved similar morbidity and cancer control outcomes. The clinical benefit of highly conformal techniques in this setting is unclear although formal analysis is needed.
RESUMO
BACKGROUND AND PURPOSE: To assess anatomic changes during intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) and to determine its dosimetric impact. PATIENTS AND METHODS: Twenty patients treated with IMRT for NPC were enrolled in this study. A second CT was performed at 38 Gy. Manual contouring of the macroscopic tumor volumes (GTV) and the planning target volumes (PTV) were done on the second CT. We recorded the volumes of the different structures, D98 %, the conformity, and the homogeneity indexes for each PTV. Volume percent changes were calculated. RESULTS: We observed a significant reduction in tumor volumes (58.56 % for the GTV N and 29.52 % for the GTV T). It was accompanied by a significant decrease in the D98 % for the 3 PTV (1.4 Gy for PTV H, p = 0.007; 0.3 Gy for PTV I, p = 0.03 and 1.15 Gy for PTV L, p = 0 0.0066). In addition, we observed a significant reduction in the conformity index in the order of 0.02 (p = 0.001) and 0.01 (p = 0.007) for PTV H and PTV I, respectively. The conformity variation was not significant for PTV L. Moreover, results showed a significant increase of the homogeneity index for PTV H (+ 0.03, p = 0.04) and PTV L (+ 0.04, p = 0.01). CONCLUSION: Tumor volume reduction during the IMRT of NPC was accompanied by deterioration of the dosimetric coverage for the different target volumes. It is essential that a careful adaptation of the treatment plan be considered during therapy for selected patients.
RESUMO
AIM: To investigate tumour motion tracking uncertainties in the CyberKnife Synchrony system with single fiducial marker in liver tumours. BACKGROUND: In the fiducial-based CyberKnife real-time tumour motion tracking system, multiple fiducial markers are generally used to enable translation and rotation corrections during tracking. However, sometimes a single fiducial marker is employed when rotation corrections are not estimated during treatment. MATERIALS AND METHODS: Data were analysed for 32 patients with liver tumours where one fiducial marker was implanted. Four-dimensional computed tomography (CT) scans were performed to determine the internal target volume (ITV). Before the first treatment fraction, the CT scans were repeated and the marker migration was determined. Log files generated by the Synchrony system were obtained after each treatment and the correlation model errors were calculated. Intra-fractional spine rotations were examined on the spine alignment images before and after each treatment. RESULTS: The mean (standard deviation) ITV margin was 4.1 (2.3) mm, which correlated weakly with the distance between the fiducial marker and the tumour. The mean migration distance of the marker was 1.5 (0.7) mm. The overall mean correlation model error was 1.03 (0.37) mm in the radial direction. The overall mean spine rotations were 0.27° (0.31), 0.25° (0.22), and 0.23° (0.26) for roll, pitch, and yaw, respectively. The treatment time was moderately associated with the correlation model errors and weakly related to spine rotation in the roll and yaw planes. CONCLUSIONS: More caution and an additional safety margins are required when tracking a single fiducial marker.
RESUMO
AIM: To identify the most reproducible technique of patient positioning and immobilization during pelvic radiotherapy. BACKGROUND: Radiotherapy plays an important role in the treatment of pelvic malignancies. Errors in positioning of patient are an integral component of treatment. The present study compares two methods of immobilization with no immobilization with an aim of identifying the most reproducible method. MATERIALS AND METHODS: 65 consecutive patients receiving pelvic external beam radiotherapy were retrospectively analyzed. 30, 21 and 14 patients were treated with no-immobilization with a leg separator, whole body vacuum bag cushion (VBC) and six point aquaplast immobilization system, respectively. The systematic error, random error and the planning target volume (PTV) margins were calculated for all the three techniques and statistically analyzed. RESULTS: The systematic errors were the highest in the VBC and random errors were the highest in the aquaplast group. Both systematic and random errors were the lowest in patients treated with no-immobilization. 3D Systematic error (mm, mean ± 1SD) was 4.31 ± 3.84, 3.39 ± 1.71 and 2.42 ± 0.97 for VBC, aquaplast and no-immobilization, respectively. 3D random error (mm, 1SD) was 2.96, 3.59 and 1.39 for VBC, aquaplast and no-immobilization, respectively. The differences were statistically significant between all the three groups. The calculated PTV margins were the smallest for the no-immobilization technique with 4.56, 4.69 and 4.59 mm, respectively, in x, y and z axes, respectively. CONCLUSIONS: Among the three techniques, no-immobilization technique with leg separator was the most reproducible technique with the smallest PTV margins. For obvious reasons, this technique is the least time consuming and most economically viable in developing countries.
RESUMO
OBJECTIVES: Ki-67 is a proliferation marker in prostate cancer. A prognostic RNA signature was developed to characterize prostate cancer aggressiveness. The aim was to evaluate prognostic correlation of CCP and Ki-67 with biochemical failure (BF), and survival in high-risk prostate cancer patients (pts) treated with radiation therapy (RT). METHODS: CCP score and Ki-67 were derived retrospectively from pre-treatment paraffin-embedded prostate cancer tissue of 33 men diagnosed from 2002 to 2006. CCP score was calculated as an average expression of 31 CCP genes. Ki-67 was determined by IHC. Single pathologist evaluated all tissues. Factors associated to failure and survival were analyzed. RESULTS: Median CCP score was 0.9 (-0-1 - 2.6). CCP 0: 1 pt; CCP 1: 19 pts; CCP 2: 13 pts. Median Ki-67 was 8.9. Ki-67 cutpoint was 15.08%. BF and DSM were observed in 21% and 9%. Ki-67 ≥ 15% predicted BF (p = 0.043). With a median follow-up of 8.4 years, 10-year BF, OS, DM and DSM for CCP 1 vs. CCP 2 was 76-71% (p = 0.83), 83-73% (p = 0.86), 89-85% (p = 0.84), and 94-78% (p = 0.66). On univariate, high Ki-67 was correlated with BF (p = 0.013), OS (p = 0.023), DM (p = 0.007), and DSM (p = 0.01). On Cox MVA, high Ki-67 had a BF trend (p = 0.063). High CCP score was not correlated with DSM. CONCLUSIONS: High Ki-67 significantly predicted outcome and provided prognostic information. CCP score may improve accuracy stratification. We did not provide prognostic correlation of CCP and DSM. It should be validated in a larger cohort of pts.
RESUMO
Background: The aim of this study is to quantify the short-term motion of the gastrointestinal tract (GI-tract) and its impact on dosimetric parameters in stereotactic body radiation therapy (SBRT) for pancreatic cancer. Methods: The analyzed patients were eleven pancreatic cancer patients treated with SBRT or proton beam therapy. To ensure a fair analysis, the simulation SBRT plan was generated on the planning CT in all patients with the dose prescription of 40â¯Gy in 5 fractions. The GI-tract motion (stomach, duodenum, small and large intestine) was evaluated using three CT images scanned at spontaneous expiration. After fiducial-based rigid image registration, the contours in each CT image were generated and transferred to the planning CT, then the organ motion was evaluated. Planning at risk volumes (PRV) of each GI-tract were generated by adding 5â¯mm margins, and the volume receiving at least 33â¯Gy (V33)â¯<â¯0.5â¯cm3 was evaluated as the dose constraint. Results: The median interval between the first and last CT scans was 736â¯s (interquartile range, IQR:624-986). To compensate for the GI-tract motion based on the planning CT, the necessary median margin was 8.0â¯mm (IQR: 8.0-10.0) for the duodenum and 14.0â¯mm (12.0-16.0) for the small intestine. Compared to the planned V33 with the worst case, the median V33 in the PRV of the duodenum significantly increased from 0.20â¯cm3 (IQR: 0.02-0.26) to 0.33â¯cm3 (0.10-0.59) at Wilcoxon signed-rank test (pâ¯=â¯0.031). Conclusion: The short-term motions of the GI-tract lead to high dose differences.
RESUMO
Background and purpose: This prospective multicenter phase II study aimed to evaluate the safety and efficacy of dynamic tumor tracking (DTT) stereotactic body radiotherapy (SBRT) with real-time monitoring of liver tumors using a gimbal-mounted system. Materials and methods: Patients with < 4 primary or metastatic liver tumors with diameters ≤ 50 mm and expected to have a respiratory motion of ≥ 10 mm were eligible. The prescribed dose was 40 Gy in five fractions. The primary endpoint was local control (LC) at 2 years. The secondary endpoints were overall survival (OS), progression-free survival (PFS), treatment-related toxicity, and tracking accuracy. Results: Between September 2015 and March 2019, 48 patients (48 lesions) with a median age of 74 years were enrolled from four institutions. Of these, 39 were diagnosed with hepatocellular carcinoma and nine with metastatic liver cancer. The median tumor diameter was 17.5 mm. DTT-SBRT was successfully performed in all patients; the median treatment time was 28 min/fraction. The median follow-up period was 36.5 months. The 2-year LC, OS, and PFS rates were 98.0 %, 88.8 %, and 55.1 %, respectively. Disease progression was observed in 33 (68.8 %) patients. One patient (0.2 %) had local recurrence, 31 (64.6 %) developed new hepatic lesions outside the irradiation field, and nine (18.8 %) had distant metastases (including overlap). Grade 3 late adverse events were observed in seven patients (14.5 %). No grade 4 or 5 treatment-related toxicity was observed. The median tracking accuracy was 2.9 mm. Conclusion: Employing DTT-SBRT to treat liver tumors results in excellent LC with acceptable adverse-event incidence.
RESUMO
Purpose: To evaluate the feasibility of subsequent elective nodal radiotherapy (ENRT) for nodal recurrences after previous radiotherapy with a defined planning approach for a gapless radiation field junction. Methods: Patients with 1) previous radiotherapy of prostate or prostatic fossa and subsequent pelvic ENRT or 2) previous pelvic radiotherapy and subsequent ENRT to paraaortic lymph nodes (LN) and gapless junction of both radiation fields were analyzed. The cumulative maximum dose (Dmax-cum) and the maximum cumulative dose in 1 cc (D1cc-cum) were estimated. Absolute toxicity and the toxicity exceeding baseline were evaluated. Results: Twenty-two patients with PSMA-PET/CT-staged nodal oligorecurrence after prior radiotherapy were treated with pelvic (14 patients) or paraaortic ENRT (9 patients). One patient was treated sequentially at both locations. Median time between first and second RT was 20.2 months. Median doses to the lymphatic pathways and to PET-positive LN were 47.5 Gy and 64.8 Gy, respectively. The planning constraint of an estimated Dmax-cum ≤ 95 Gy and of D1cc-cum < 90 Gy were achieved in 23/23 cases and 22/23 cases, respectively. Median follow-up was 33.5 months. There was no additional acute or late toxicity ≥ grade 3. Worst acute toxicity exceeding baseline was grade 1 in 68.2% and grade 2 in 22.7% of patients. Worst late toxicity exceeding baseline was grade 1 in 31.8% and grade 2 in 18.2% of patients. Conclusion: ENRT for nodal recurrences after a previous radiotherapy with gapless junction of radiation fields seems to be feasible, applying the dose constraints Dmax-cum ≤ 95 Gy and D1cc-cum < 90 Gy without grade 3 acute or late toxicities exceeding baseline.
RESUMO
Purpose: To analyze long-term oncological outcome after 2nd conservative treatment (2ndCT) for patients with ipsilateral 2nd ipsilateral breast tumor event (2ndIBTE). Materials/methods: In this retrospective observational study (N°F20210402152843), patients with 2ndIBTE underwent 2ndCT (lumpectomy + tumor bed re-irradiation). 3rdIBTE (3rdIBTE-FS), regional relapse- (RRFS) and metastatic disease- (MD-FS) free survivals as well as disease-free (DFS), specific (SS) and overall (OS) survival were analyzed. Late toxicity was reported. Results: Between 09/2000 and 04/2022, 244 patients presented a 2ndIBTE and underwent a 2ndCT. Among them, 113 pts with a minimum follow-up of 60 months were analyzed. Median time interval between 1st and 2ndIBTE was 13.5 years [2-35]. Median 2ndIBTE age was 66.2 years [31-85]. 2ndIBTE were adenocarcinomas (77 %). Tumor size was < 20 mm (86.7 %). 2ndIBTE were grade 1/2 (75 %), with positive hormonal receptor (85 %) and clear surgical margins (no ink on tumor, 90.3 %). In the APBI classification, 21 pts were high-risk (18.6 %), while 77 % were Luminal A/BHer2-. With a MFU of 121.5 months [CI95% 111.7-129.6], 10-year 3rdIBTE-FS was 89 % [83-96]. Then-year RRFS, MDFS, DFS, SS and OS were 94 % [89-100], 89 % [83-96], 78 % [70-87], 95 % [91-100] and 94 % [90 -99] respectively. In multivariate analysis, APBI classification (high-risk; HR2.66 [1.01-7.1], p = 0.049) and tumor size (≥20 mm; HR2.64 [1.02-6.8], p = 0.045) were considered independent prognostic factors for DFS.Ninety-seven late complications were observed (fibrosis 64 %) with 6.2 % G ≥ 3 late toxicity. Cosmetic outcome was excellent/good in 91.2 %. Conclusions: With long follow-up, 2ndIBTE managed with 2ndCT allows second breast preservation without oncological outcome compromise and acceptable G ≥ 3 toxicity.
RESUMO
Background and purpose: Radiotherapy (RT) is an adjuvant treatment option for glioma patients. Side effects include tissue atrophy, which might be a contributing factor to neurocognitive decline after treatment. The goal of this study was to determine potential atrophy of the hippocampus, amygdala, thalamus, putamen, pallidum and caudate nucleus in glioma patients having undergone magnetic resonance imaging (MRI) before and after RT. Materials and methods: Subcortical volumes were measured using T1-weighted MRI from patients before RT (N = 91) and from longitudinal follow-ups acquired in three-monthly intervals (N = 349). The volumes were normalized to the baseline values, while excluding structures touching the clinical target volume (CTV) or abnormal tissue seen on FLAIR imaging. A multivariate linear effects model was used to determine if time after RT and mean RT dose delivered to the corresponding structures were significant predictors of tissue atrophy. Results: The hippocampus, amygdala, thalamus, putamen, and pallidum showed significant atrophy after RT as function of both time after RT and mean RT dose delivered to the corresponding structure. Only the caudate showed no dose or time dependant atrophy. Conversely, the hippocampus was the structure with the highest atrophy rate of 5.2 % after one year and assuming a mean dose of 30 Gy. Conclusion: The hippocampus showed the highest atrophy rates followed by the thalamus and the amygdala. The subcortical structures here found to decrease in volume indicative of radiosensitivity should be the focus of future studies investigating the relationship between neurocognitive decline and RT.
RESUMO
Introduction: Spinal metastasis is the most common metastatic skeletal disease in cancer patients. Metastatic epidural spinal cord compression (MESCC), which occurs in 5-14% of cancer patients, is an oncological emergency because it may cause a permanent neurological deficit. Separation surgery followed by stereotactic ablative radiotherapy (SABR), so-called "hybrid therapy," has shown effectiveness in local control of spinal metastasis and has become an integral treatment option for patients with MESCC. Therefore, we performed a meta-analysis and meta-regression analysis to clarify the local progression rate of hybrid therapy and the risk factors for local progression. Methods: We searched PubMed, EMBASE, Scopus, Cochrane Library, and Web of Science databases from inception to December 2021. Meta-analyses of proportions were used to analyze the data using a random-effects model to calculate the pooled 1-year local progression rate and confidence interval. Subgroup analyses were performed using meta-analyses of odds ratio (OR) for comparisons between groups. We also conducted a meta-regression analysis to identify the factors that caused heterogeneity. Results: A total of 661 patients from 13 studies (10 retrospective and 3 prospective) were included in the final meta-analysis. The quality of the included studies assessed using the Newcastle - Ottawa scale ranged from poor to fair (range, 4-6). The pooled local progression rate was 10.2 % (95 % confidence interval [CI], 7.8-12.8 %; I2 = 30 %) and 13.7 % (95 % CI, 9.3-18.8 %; I2 = 55 %) at postoperative 1 and 2 years, respectively. The subgroup analysis indicated that patients with a history of prior radiotherapy (OR, 5.14; 95 % CI, 1.71-15.51) and lower radiation dose per fraction (OR, 4.57; 95 % CI, 1.88-11.13) showed significantly higher pooled 1-year local progression rates. In the moderator analysis, the 1-year local progression rate was significantly associated with the proportion of patients with a history of prior radiotherapy (p = 0.036) and those with colorectal cancer as primary origin (p < 0.001). Conclusions: The pooled 1-year local progression rate of hybrid therapy for MESCC was 10.2%. In subgroup and moderator analyses, a lower radiation dose per fraction, history of prior radiotherapy, and colorectal cancer showed a significant association with the 1-year local progression rate.
RESUMO
Background: For small primary liver tumors, favorable outcomes have been reported with both of proton beam therapy (PBT) and X-ray therapy (XRT). However, no clear criteria have been proposed in the cases for which and when of PBT or XRT has to be used. The aim of this study is to investigate cases that would benefit from PBT based on the predicted rate of hepatic toxicity. Materials and methods: Eligible patients were those who underwent PBT for primary liver tumors with a maximum diameter of ≤ 5 cm and Child-Pugh grade A (n = 40). To compare the PBT-plan, the treatment plan using volumetric modulated arc therapy was generated as the XRT-plan. The rate of predicted hepatic toxicity was estimated using five normal tissue complication probability (NTCP) models with three different endpoints. The differences in NTCP values (ΔNTCP) were calculated to determine the relative advantage of PBT. Factors predicting benefits of PBT were analyzed by logistic regression analysis. Results: From the dose-volume histogram comparisons, an advantage of PBT was found in sparing of the normal liver receiving low doses. The factors predicting the benefit of PBT differed depending on the selected NTCP model. From the five models, the total tumor diameter (sum of the target tumors), location (hepatic hilum vs other), and number of tumors (1 vs 2) were significant factors. Conclusions: From the radiation-related hepatic toxicity, factors were identified to predict benefits of PBT in primary liver tumors with Child-Pugh grade A, with the maximum tumor diameter of ≤ 5 cm.
RESUMO
PURPOSE: To issue consensus recommendations for contact X-Ray brachytherapy (CXB) for rectal cancer covering pre-treatment evaluation, treatment, dosimetric issues and follow-up. These recommendations cover CXB in the definitive and palliative setting. METHODS: Members of GEC ESTRO with expertise in rectal CXB issued consensus-based recommendations for CXB based on literature review and clinical experience. Levels of evidence according to the Oxford Centre for Evidence based medicine guidance are presented where possible. RESULTS: The GEC ESTRO ACROP consensus recommendations support the use of CXB to increase the chances of clinical complete remission and cure for patients who are elderly with high surgical risk, surgically unfit or refusing surgery. For palliative treatment, the use of CXB is recommended for symptomatic relief and disease control. The use of CXB in an organ-preservation setting in surgically fit patients is recommended within the setting of a clinical trial or registry. CONCLUSIONS: The GEC ESTRO ACROP recommendations for CXB are provided. Recommendations towards standardisation of reporting and prescription are given. Practitioners are encouraged to follow these recommendations and to develop further clinical trials to examine this treatment modality and increase the evidence base for its use. The routine collection of outcomes both clinical and patient-reported is also encouraged.
RESUMO
Background: The microscopic tumor extension before, during or after radiochemotherapy (RCHT) and its correlation with the tumor microenvironment (TME) are presently unknown. This information is, however, crucial in the era of image-guided, adaptive high-precision photon or particle therapy. Materials and methods: In this pilot study, we analyzed formalin-fixed paraffin-embedded (FFPE) tumor resection specimen from patients with histologically confirmed squamous cell carcinoma (SCC; n = 10) or adenocarcinoma (A; n = 10) of the esophagus, having undergone neoadjuvant radiochemotherapy followed by resection (NRCHT + R) or resection (R)]. FFPE tissue sections were analyzed by immunohistochemistry regarding tumor hypoxia (HIF-1α), proliferation (Ki67), immune status (PD1), cancer cell stemness (CXCR4), and p53 mutation status. Marker expression in HIF-1α subvolumes was part of a sub-analysis. Statistical analyses were performed using one-sided Mann-Whitney tests and Bland-Altman analysis. Results: In both SCC and AC patients, the overall percentages of positive tumor cells among the five TME markers, namely HIF-1α, Ki67, p53, CXCR4 and PD1 after NRCHT were lower than in the R cohort. However, only PD1 in SCC and Ki67 in AC showed significant association (Ki67: p = 0.03, PD1: p = 0.02). In the sub-analysis of hypoxic subvolumes among the AC patients, the percentage of positive tumor cells within hypoxic regions were statistically significantly lower in the NRCHT than in the R cohort across all the markers except for PD1. Conclusion: In this pilot study, we showed changes in the TME induced by NRCHT in both SCC and AC. These findings will be correlated with microscopic tumor extension measurements in a subsequent cohort of patients.
RESUMO
Background and purpose: Glioblastoma (GBM) patients have a dismal prognosis. Tumours typically recur within months of surgical resection and post-operative chemoradiation. Multiparametric magnetic resonance imaging (mpMRI) biomarkers promise to improve GBM outcomes by identifying likely regions of infiltrative tumour in tumour probability (TP) maps. These regions could be treated with escalated dose via dose-painting radiotherapy to achieve higher rates of tumour control. Crucial to the technical validation of dose-painting using imaging biomarkers is the repeatability of the derived dose prescriptions. Here, we quantify repeatability of dose-painting prescriptions derived from mpMRI. Materials and methods: TP maps were calculated with a clinically validated model that linearly combined apparent diffusion coefficient (ADC) and relative cerebral blood volume (rBV) or ADC and relative cerebral blood flow (rBF) data. Maps were developed for 11 GBM patients who received two mpMRI scans separated by a short interval prior to chemoradiation treatment. A linear dose mapping function was applied to obtain dose-painting prescription (DP) maps for each session. Voxel-wise and group-wise repeatability metrics were calculated for parametric, TP and DP maps within radiotherapy margins. Results: DP maps derived from mpMRI were repeatable between imaging sessions (ICC > 0.85). ADC maps showed higher repeatability than rBV and rBF maps (Wilcoxon test, p = 0.001). TP maps obtained from the combination of ADC and rBF were the most stable (median ICC: 0.89). Conclusions: Dose-painting prescriptions derived from a mpMRI model of tumour infiltration have a good level of repeatability and can be used to generate reliable dose-painting plans for GBM patients.
RESUMO
Aim: To investigate the clinical relevance of the radiotherapy (RT) dose bath in patients treated for lower grade glioma (LGG). Methods: Patients (n = 17) treated with RT for LGG were assessed with neurocognitive function (NCF) tests and structural Magnetic Resonance Imaging (MRI) and categorized in subgroups based on tumour lateralisation. RT dose, volumetric results and cerebral microbleed (CMB) number were extracted for contralateral cerebrum, contralateral hippocampus, and cerebellum. The RT clinical target volume (CTV) was included in the analysis as a surrogate for focal tumour and other treatment effects. The relationships between RT dose, CTV, NCF and radiological outcome were analysed per subgroup. Results: The subgroup with left-sided tumours (n = 10) performed significantly lower on verbal tests. The RT dose to the right cerebrum, as well as CTV, were related to poorer performance on tests for processing speed, attention, and visuospatial abilities, and more CMB.In the subgroup with right-sided tumours (n = 7), RT dose in the left cerebrum was related to lower verbal memory performance, (immediate and delayed recall, r = -0.821, p = 0.023 and r = -0.937, p = 0.002, respectively), and RT dose to the left hippocampus was related to hippocampal volume (r = -0.857, p = 0.014), without correlation between CTV and NCF. Conclusion: By using a novel approach, we were able to investigate the clinical relevance of the RT dose bath in patients with LGG more specifically. We used combined MRI-derived and NCF outcome measures to assess radiation-induced brain damage, and observed potential RT effects on the left-sided brain resulting in lower verbal memory performance and hippocampus volume.
RESUMO
Background and purpose: The Ethos system has enabled online adaptive radiotherapy (oART) by implementing an automated treatment planning system (aTPS) for both intensity-modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) plan creation. The purpose of this study is to evaluate the quality of aTPS plans in the pelvic region. Material and Methods: Sixty patients with anal (n = 20), rectal (n = 20) or prostate (n = 20) cancer were retrospectively re-planned with the aTPS. Three IMRT (7-, 9- and 12-field) and two VMAT (2 and 3 arc) automatically generated plans (APs) were created per patient. The duration of the automated plan generation was registered. The best IMRT-AP and VMAT-AP for each patient were selected based on target coverage and dose to organs at risk (OARs). The AP quality was analyzed and compared to corresponding clinically accepted and manually generated VMAT plans (MPs) using several clinically relevant dose metrics. Calculation-based pre-treatment plan quality assurance (QA) was performed for all plans. Results: The median total duration to generate the five APs with the aTPS was 55 min, 39 min and 35 min for anal, prostate and rectal plans, respectively. The target coverage and the OAR sparing were equivalent for IMRT-APs and VMAT-MPs, while VMAT-Aps.demonstrated lower target dose homogeneity and higher dose to some OARs. Both conformity and homogeneity index were equivalent (rectal) or better (anal and prostate) for IMRT-APs compared to VMAT-MPs. All plans passed the patient-specific QA tolerance limit. Conclusions: The aTPS generates plans comparable to MPs within a short time-frame which is highly relevant for oART treatments.
RESUMO
AIMS: To evaluate neurocognitive performance, daily activity and quality of life (QoL), other than usual oncologic outcomes, among patients with brain metastasis ≥5 (MBM) from solid tumors treated with Stereotactic Brain Irradiation (SBI) or Whole Brain Irradiation (WBI). METHODS: This multicentric randomized controlled trial will involve the enrollment of 100 patients (50 for each arm) with MBM ≥ 5, age ≥ 18 years, Karnofsky Performance Status (KPS) ≥ 70, life expectancy > 3 months, known primary tumor, with controlled or controllable extracranial disease, baseline Montreal Cognitive Assessment (MoCA) score ≥ 20/30, Barthel Activities of Daily Living score ≥ 90/100, to be submitted to SBI by LINAC with monoisocentric technique and non-coplanar arcs (experimental arm) or to WBI (control arm). The primary endpoints are neurocognitive performance, QoL and autonomy in daily-life activities variations, the first one assessed by MoCa Score and Hopkins Verbal Learning Test-Revised, the second one through the EORTC QLQ-C15-PAL and QLQ-BN-20 questionnaires, the third one through the Barthel Index, respectively. The secondary endpoints are time to intracranial failure, overall survival, retreatment rate, acute and late toxicities, changing of KPS. It will be considered significant a statistical difference of at least 30% between the two arms (statistical power of 80% with a significance level of 95%). DISCUSSION: Several studies debate what is the decisive factor accountable for the development of neurocognitive decay among patients undergoing brain irradiation for MBM: radiation effect on clinically healthy brain tissue or intracranial tumor burden? The answer to this question may come from the recent technological advancement that allows, in a context of a significant time saving, improved patient comfort and minimizing radiation dose to off-target brain, a selective treatment of MBM simultaneously, otherwise attackable only by WBI. The achievement of a local control rate comparable to that obtained with WBI remains the fundamental prerequisite. TRIAL REGISTRATION: NCT number: NCT04891471.
RESUMO
PURPOSE: Brachytherapy (BT) boost after radio-chemotherapy (RCT) is a standard of care in the management of locally advanced cervical cancer (LACC). As there is no consensus on high-dose-rate (HDR) BT fractionation schemes, our aim was to report the oncological outcome and toxicity profile of four different schemes using twice-a-day (BID) HDR-BT. PATIENTS AND METHODS: This was an observational, retrospective, single institution study for patients with LACC receiving a HDR-BT boost. The latter was performed with a single implant and single imaging done on day 1. The different fractionation schemes were: 7 Gy + 4x3.5 Gy (group 1); 7 Gy + 4x4.5 Gy (group 2); 3x7Gy (group 3) and 3x8Gy (group 4). Local (LFS), nodal (NFS) and metastatic (MFS) recurrence-free survival as well as progression-free survival (PFS) and overall survival (OS) were analyzed. Acute (≤6 months) and late toxicities (>6 months) were reported. RESULTS: From 2007 to 2018, 191 patients were included. Median follow-up was 57 months [45-132] and median EQD210D90CTVHR was 84, 82 and 90 Gy for groups 2, 3 and 4 respectively (dosimetric data missing for group 1). The 5-year LFS, NFS, MFS, PFS and OS were 85% [81-90], 83% [79-86], 70% [67-73], 61% [57-64] and 75% [69-78] respectively, with no significant difference between the groups. EQD210D90CTVHR < 85 Gy was a prognostic factor for local recurrence in univariate analysis (p = 0.045). The rates of acute/late grade ≥ 2 urinary, digestive and gynecological toxicities were 9%/15%, 3%/15% and 9%/25% respectively. CONCLUSION: Bi-fractionated HDR-BT boost seems feasible with good oncological outcome and slightly more toxicity after dose escalation.