Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(4): 556-573.e7, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36696898

RESUMO

The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca2+ ([Ca2+]i), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca2+]i elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca2+]i induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca2+ release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca2+-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.


Assuntos
DNA , Nucleotidiltransferases , DNA/genética , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Membrana , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV
2.
Mol Cell ; 74(6): 1123-1137.e6, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31053472

RESUMO

Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Cálcio/metabolismo , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Replicação do DNA , Exodesoxirribonucleases/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sinalização do Cálcio/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina/química , Cromatina/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Mol Cell ; 69(1): 87-99.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249655

RESUMO

Loss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance. The effect of GDH1 on AMPK is evident in LKB1-deficient lung cancer, where AMPK activation predominantly depends on CamKK2. Targeting GDH1 with R162 attenuated tumor metastasis in patient-derived xenograft model and correlation studies in lung cancer patients further validated the clinical relevance of our finding. Our study provides insight into the molecular mechanism by which GDH1-mediated metabolic reprogramming of glutaminolysis mediates lung cancer metastasis and offers a therapeutic strategy for patients with LKB1-deficient lung cancer.


Assuntos
Anoikis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Glutamato Desidrogenase/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Metástase Neoplásica/patologia , Transplante de Neoplasias , Transplante Heterólogo
4.
Ren Fail ; 46(1): 2354918, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38757723

RESUMO

Cisplatin is a particularly potent antineoplastic drug. However, its usefulness is restricted due to the induction of nephrotoxicity. More recent research has indicated that ß-hydroxybutyrate (ß-HB) protects against acute or chronic organ damage as an efficient healing agent. Nonetheless, the therapeutic mechanisms of ß-HB in acute kidney damage caused by chemotherapeutic drugs remain unclear. Our study developed a model of cisplatin-induced acute kidney injury (AKI), which involved the administration of a ketogenic diet or ß-HB. We analyzed blood urea nitrogen (BUN) and creatinine (Cr) levels in serum, and used western blotting and immunohistochemical staining to assess ferroptosis and the calcium/calmodulin-dependent kinase kinase 2 (Camkk2)/AMPK pathway. The mitochondrial morphology and function were examined. Additionally, we conducted in vivo and in vitro experiments using selective Camkk2 inhibitor or activator to investigate the protective mechanism of ß-HB on cisplatin-induced AKI. Exogenous or endogenous ß-HB effectively alleviated cisplatin-induced abnormally elevated levels of BUN and Cr and renal tubular necrosis in vivo. Additionally, ß-HB reduced ferroptosis biomarkers and increased the levels of anti-ferroptosis biomarkers in the kidney. ß-HB also improved mitochondrial morphology and function. Moreover, ß-HB significantly attenuated cisplatin-induced cell ferroptosis and damage in vitro. Furthermore, western blotting and immunohistochemical staining indicated that ß-HB may prevent kidney injury by regulating the Camkk2-AMPK pathway. The use of the Camkk2 inhibitor or activator verified the involvement of Camkk2 in the renal protection by ß-HB. This study provided evidence of the protective effects of ß-HB against cisplatin-induced nephrotoxicity and identified inhibited ferroptosis and Camkk2 as potential molecular mechanisms.


ß-HB protects against cisplatin-induced renal damage both in vivo and in vitro.Moreover, ß-HB is effective in attenuating cisplatin-induced lipid peroxidation and ferroptosis.The regulation of energy metabolism, as well as the treatment involving ß-HB, is associated with Camkk2.


Assuntos
Ácido 3-Hidroxibutírico , Injúria Renal Aguda , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Cisplatino , Ferroptose , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Animais , Ferroptose/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Camundongos , Ácido 3-Hidroxibutírico/farmacologia , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Antineoplásicos/toxicidade , Antineoplásicos/efeitos adversos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Nitrogênio da Ureia Sanguínea , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Creatinina/sangue , Humanos
5.
J Transl Med ; 21(1): 900, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082327

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. METHODS: IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/ß-catenin pathway. SKL2001, an activator of ß-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS: It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/ß-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS: Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Doenças Mitocondriais , Humanos , Via de Sinalização Wnt , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Doenças Mitocondriais/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo
6.
Osteoarthritis Cartilage ; 31(7): 908-918, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36858195

RESUMO

OBJECTIVE: To investigate the role of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) in human osteoarthritis. MATERIALS AND METHODS: Paired osteochondral plugs and articular chondrocytes were isolated from the relatively healthier (intact) and damaged portions of human femoral heads collected from patients undergoing total hip arthroplasty for primary osteoarthritis (OA). Cartilage from femoral plugs were either flash frozen for gene expression analysis or histology and immunohistochemistry. Chondrocyte apoptosis in the presence or absence of CAMKK2 inhibition was measured using flow cytometry. CAMKK2 overexpression and knockdown in articular chondrocytes were achieved via Lentivirus- and siRNA-mediated approaches respectively, and their effect on pro-apoptotic and cartilage catabolic mechanisms was assessed by immunoblotting. RESULTS: CAMKK2 mRNA and protein levels were elevated in articular chondrocytes from human OA cartilage compared to paired healthier intact samples. This increase was associated with elevated catabolic marker matrix metalloproteinase 13 (MMP-13), and diminished anabolic markers aggrecan (ACAN) and type II collagen (COL2A1) levels. OA chondrocytes displayed enhanced apoptosis, which was suppressed following pharmacological inhibition of CAMKK2. Levels of MMP13, pSTAT3, and the pro-apoptotic marker BAX became elevated when CAMKK2, but not its kinase-defective mutant was overexpressed, whereas knockdown of the kinase decreased the levels of these proteins. CONCLUSIONS: CAMKK2 is upregulated in human OA cartilage and is associated with elevated levels of pro-apoptotic and catabolic proteins. Inhibition or knockdown of CAMKK2 led to decreased chondrocyte apoptosis and catabolic protein levels, whereas its overexpression elevated them. CAMKK2 may be a therapeutic target to prevent or mitigate human OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Osteoartrite/metabolismo , Apoptose , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
7.
J Neurovirol ; 29(3): 241-251, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37166584

RESUMO

HIV-associated sensory neuropathy (HIV-SN) affects 14-38% of HIV+ individuals stable on therapy with no neurotoxic drugs. Polymorphisms in CAMKK2, P2X7R and P2X4R associated with altered risk of HIV-SN in Indonesian and South African patients. The role of CaMKK2 in neuronal repair makes this an attractive candidate, but a direct role for any protein is predicated on expression in affected tissues. Here, we describe expression of CaMKK2, P2X7R and P2X4R proteins in skin biopsies from the lower legs of HIV+ Indonesians with and without HIV-SN, and healthy controls (HC). HIV-SN was diagnosed using the Brief Peripheral Neuropathy Screen. Biopsies were stained to detect protein gene product 9.5 on nerve fibres and CaMKK2, P2X7R or P2X4R, and were examined using 3-colour sequential scanning confocal microscopy. Intraepidermal nerve fibre densities (IENFD) were lower in HIV+ donors than HC and correlated directly with nadir CD4 T-cell counts (r = 0.69, p = 0.004). However, IENFD counts were similar in HIV-SN+ and HIV-SN- donors (p = 0.19) and so did not define neuropathy. CaMKK2+ cells were located close to dermal and epidermal nerve fibres and were rare in HC and HIV-SN- donors, consistent with a role for the protein in nerve damage and/or repair. P2X7R was expressed by cells in blood vessels of HIV-SN- donors, but rarely in HC or HIV-SN+ donors. P2X4R expression by cells in the epidermal basal layer appeared greatest in HIV-SN+ donors. Overall, the differential expression of CaMKK2, P2X7R and P2X4R supports the genetic evidence of a role for these proteins in HIV-SN.


Assuntos
Infecções por HIV , Doenças do Sistema Nervoso Periférico , Humanos , Infecções por HIV/complicações , Infecções por HIV/genética , Infecções por HIV/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/complicações , Pele , Biópsia , Polimorfismo de Nucleotídeo Único , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
8.
Inflamm Res ; 72(7): 1409-1425, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37338678

RESUMO

OBJECTIVE: Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) can regulate numerous biological processes and is implicated in diverse pathological processes. Yet its role in myocardial ischemia/reperfusion (MI/R) injury remains unknown. This project explored the possible functions and mechanisms of CaMKK2 in MI/R injury. METHODS: A rat model of MI/R in vivo was established using the left anterior descending coronary artery ligation method. Rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) in vitro to establish a cell model. Overexpression of CaMKK2 was achieved by infecting recombinant adeno-associated virus or adenovirus expressing CaMKK2. Real-time quantitative PCR, immunoblotting, TTC staining, TUNEL assay, ELISA, oxidative stress detection assays, flow cytometry, and CCK-8 assay were carried out. RESULTS: A decline in CaMKK2 levels was induced by MI/R in vivo or H/R in vitro. Up-modulation of CaMKK2 in rats ameliorated the cardiac injury evoked by MI/R injury accompanied by suppression of cardiac apoptosis, oxidative stress, and proinflammatory response. Rat cardiomyocytes with CaMKK2 overexpression were also protected from H/R damage by inhibiting apoptosis, oxidative stress, and proinflammatory response. CaMKK2 overexpression led to increased phosphorylation of AMPK, AKT, and GSK-3ß, and enhanced activation of Nrf2 under MI/R or H/R conditions. Inhibition of AMPK abolished CaMKK2-mediated Nrf2 activation and relevant cardioprotective effect. Restraint of Nrf2 also diminished CaMKK2-mediated relevant cardioprotective effect. CONCLUSIONS: Up-regulation of CaMKK2 provides a therapeutic benefit in the rat model of MI/R injury by boosting the Nrf2 pathway through regulation of AMPK/AKT/GSK-3ß, which suggests CaMKK2 as a new molecular target for the treatment of MI/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo , Miócitos Cardíacos , Apoptose , Inflamação/metabolismo
9.
Phytother Res ; 37(7): 2759-2770, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36762415

RESUMO

Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.


Assuntos
Apetite , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Eugenol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Transdução de Sinais
10.
Zhongguo Zhong Yao Za Zhi ; 48(1): 193-201, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36725271

RESUMO

Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 µmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.


Assuntos
Fígado Gorduroso , MicroRNAs , Humanos , Etanol/toxicidade , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Triglicerídeos , MicroRNAs/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética
11.
Crit Rev Biochem Mol Biol ; 55(1): 17-32, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069425

RESUMO

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that functions to restore the energy balance by phosphorylating its substrates during altered metabolic conditions. AMPK activity is tightly controlled by diverse regulators including its upstream kinases LKB1 and CaMKK2. Recent studies have also identified the localization of AMPK at different intracellular compartments as another key mechanism for regulating AMPK signaling in response to specific stimuli. This review discusses the AMPK signaling associated with different subcellular compartments, including lysosomes, endoplasmic reticulum, mitochondria, Golgi apparatus, nucleus, and cell junctions. Because altered AMPK signaling is associated with various pathologic conditions including cancer, targeting AMPK signaling in different subcellular compartments may present attractive therapeutic approaches for treatment of disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Organelas/enzimologia , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Neoplasias/patologia , Organelas/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
12.
Osteoarthritis Cartilage ; 30(1): 124-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506942

RESUMO

OBJECTIVE: To investigate the role of Ca2+/calmodulin-dependent protein kinase 2 (CaMKK2) in post-traumatic osteoarthritis (PTOA). METHODS: Destabilization of the medial meniscus (DMM) or sham surgeries were performed on 10-week-old male wild-type (WT) and Camkk2-/- mice. Half of the DMM-WT mice and all other cohorts (n = 6/group) received tri-weekly intraperitoneal (i.p.) injections of saline whereas the remaining DMM-WT mice (n = 6/group) received i.p. injections of the CaMKK2 inhibitor STO-609 (0.033 mg/kg body weight) thrice a week. Study was terminated at 8- or 12-weeks post-surgery, and knee joints processed for microcomputed tomography imaging followed by histology and immunohistochemistry. Primary articular chondrocytes were isolated from knee joints of 4-6-day-old WT and Camkk2-/- mice, and treated with 10 ng/ml interleukin-1ß (IL)-1ß for 24 or 48 h to investigate gene and protein expression. RESULTS: CaMKK2 levels and activity became elevated in articular chondrocytes following IL-1ß treatment or DMM surgery. Inhibition or absence of CaMKK2 protected against DMM-associated destruction of the cartilage, subchondral bone alterations and synovial inflammation. When challenged with IL-1ß, chondrocytes lacking CaMKK2 displayed attenuated inflammation, cartilage catabolism, and resistance to suppression of matrix synthesis. IL-1ß-treated CaMKK2-null chondrocytes displayed decreased IL-6 production, activation of signal transducer and activator of transcription 3 (Stat3) and matrix metalloproteinase 13 (MMP13), indicating a potential mechanism for the regulation of inflammatory responses in chondrocytes by CaMKK2. CONCLUSIONS: Our findings reveal a novel function for CaMKK2 in chondrocytes and highlight the potential for its inhibition as an innovative therapeutic strategy in the prevention of PTOA.


Assuntos
Benzimidazóis/uso terapêutico , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/fisiologia , Cartilagem Articular/lesões , Naftalimidas/uso terapêutico , Osteoartrite/etiologia , Osteoartrite/prevenção & controle , Animais , Masculino , Camundongos , Ferimentos e Lesões/complicações
13.
Eur Heart J ; 42(36): 3786-3799, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34347073

RESUMO

AIMS: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS: These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Regiões 3' não Traduzidas/genética , Animais , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Proteínas de Transporte , Insuficiência Cardíaca/genética , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos
14.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216322

RESUMO

Capsaicin and zinc have recently been highlighted as potential treatments for glucose metabolism disorders; however, the effect of these two natural compounds on signalling pathways involved in glucose metabolism is still uncertain. In this study, we assessed the capsaicin- or zinc- induced activation of signalling molecules including calcium/calmodulin-dependent protein kinase 2 (CAMKK2), cAMP-response element-binding protein (CREB), and target of rapamycin kinase complex 1 (TORC1). Moreover, the expression status of genes associated with the control of glucose metabolism was measured in treated cells. The activation of cell signalling proteins was then evaluated in capsaicin- or zinc treated cells in the presence or absence of cell-permeant calcium chelator (BAPTA-AM) and the CAMKK inhibitor (STO-609). Finally, capsaicin- and zinc-induced glucose uptake was measured in the cells pre-treated with or without BAPTA-AM. Our results indicate that calcium flux induced by capsaicin or zinc led to activation of calcium signalling molecules and promoting glucose uptake in skeletal muscle cells. Pharmacological inhibition of CAMKK diminished activation of signalling molecules. Moreover, we observed an increase in intracellular cAMP levels in the cells after treatment with capsaicin and zinc. Our data show that capsaicin and zinc mediate glucose uptake in C2C12 skeletal muscle cells through the activation of calcium signalling.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Capsaicina/farmacologia , Glucose/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Zinco/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Naftalimidas/farmacologia , Fosforilação/efeitos dos fármacos
15.
J Proteome Res ; 20(5): 2687-2703, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844560

RESUMO

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death worldwide. We showed previously that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2), a serine-threonine kinase, is highly expressed in gastric cancer and leads to progression. In the present study, we identified the molecular networks involved in CAMKK2-mediated progression of gastric adenocarcinoma. Treatment of gastric cancer cell lines with a CAMKK2 inhibitor, STO-609, resulted in decreased cell migration, invasion, and colony-forming ability and a G1/S-phase arrest. In addition, tandem mass tag (TMT)-based quantitative proteomic analysis resulted in the identification of 7609 proteins, of which 219 proteins were found to be overexpressed and 718 downregulated (1.5-fold). Our data identified several key downregulated proteins involved in cell division and cell proliferation, which included DNA replication licensing factors, replication factor C, origin recognition complex, replication protein A and GINS, and mesenchymal markers, upon CAMKK2 inhibition. Immunoblotting and immunofluorescence results showed concordance with our mass spectroscopy data. Taken together, our study supports CAMKK2 as a novel therapeutic target in gastric cancer.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Neoplasias Gástricas , Cálcio , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Carcinogênese/genética , Humanos , Proteômica , Neoplasias Gástricas/genética
16.
J Biol Chem ; 295(48): 16239-16250, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32913128

RESUMO

The calcium-calmodulin-dependent protein kinase kinase-2 (CaMKK2) is a key regulator of cellular and whole-body energy metabolism. It is known to be activated by increases in intracellular Ca2+, but the mechanisms by which it is inactivated are less clear. CaMKK2 inhibition protects against prostate cancer, hepatocellular carcinoma, and metabolic derangements induced by a high-fat diet; therefore, elucidating the intracellular mechanisms that inactivate CaMKK2 has important therapeutic implications. Here we show that stimulation of cAMP-dependent protein kinase A (PKA) signaling in cells inactivates CaMKK2 by phosphorylation of three conserved serine residues. PKA-dependent phosphorylation of Ser495 directly impairs calcium-calmodulin activation, whereas phosphorylation of Ser100 and Ser511 mediate recruitment of 14-3-3 adaptor proteins that hold CaMKK2 in the inactivated state by preventing dephosphorylation of phospho-Ser495 We also report the crystal structure of 14-3-3ζ bound to a synthetic diphosphorylated peptide that reveals how the canonical (Ser511) and noncanonical (Ser100) 14-3-3 consensus sites on CaMKK2 cooperate to bind 14-3-3 proteins. Our findings provide detailed molecular insights into how cAMP-PKA signaling inactivates CaMKK2 and reveals a pathway to inhibit CaMKK2 with potential for treating human diseases.


Assuntos
Proteínas 14-3-3/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transdução de Sinais , Proteínas 14-3-3/genética , Animais , Células COS , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática , Humanos
17.
Mol Carcinog ; 60(11): 769-783, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437731

RESUMO

Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.


Assuntos
Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Naftalimidas/farmacologia , Proteômica/métodos , Neoplasias Gástricas/metabolismo , Proteína Quinase CDC2/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Quinase 2 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Espectrometria de Massas em Tandem
18.
Cell Commun Signal ; 19(1): 98, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563205

RESUMO

BACKGROUND: The calcium (Ca2+)/calmodulin (CAM)-activated kinase kinase 2 (CAMKK2)-signaling regulates several physiological processes, for example, glucose metabolism and energy homeostasis, underlying the pathogenesis of metabolic diseases. CAMKK2 exerts its biological function through several downstream kinases, therefore, it is expected that depending on the cell-type-specific kinome profile, the metabolic effects of CAMKK2 and its underlying mechanism may differ. Identification of the cell-type-specific differences in CAMKK2-mediated glucose metabolism will lead to unravelling the organ/tissue-specific role of CAMKK2 in energy metabolism. Therefore, the objective of this study was to understand the cell-type-specific regulation of glucose metabolism, specifically, respiration under CAMKK2 deleted conditions in transformed human embryonic kidney-derived HEK293 and hepatoma-derived HepG2 cells. METHODS: Cellular respiration was measured in terms of oxygen consumption rate (OCR). OCR and succinate dehydrogenase (SDH) enzyme activity were measured following the addition of substrates. In addition, transcription and proteomic and analyses of the electron transport system (ETS)-associated proteins, including mitochondrial SDH protein complex (complex-II: CII) subunits, specifically SDH subunit B (SDHB), were performed using standard molecular biology techniques. The metabolic effect of the altered SDHB protein content in the mitochondria was further evaluated by cell-type-specific knockdown or overexpression of SDHB. RESULTS: CAMKK2 deletion suppressed cellular respiration in both cell types, shifting metabolic phenotype to aerobic glycolysis causing the Warburg effect. However, isolated mitochondria exhibited a cell-type-specific enhancement or dampening of the respiratory kinetics under CAMKK2 deletion conditions. This was mediated in part by the cell-type-specific effect of CAMKK2 loss-of-function on transcription, translation, post-translational modification (PTM), and megacomplex assembly of nuclear-encoded mitochondrial SDH enzyme complex subunits, specifically SDHB. The cell-type-specific increase or decrease in SDHs protein levels, specifically SDHB, under CAMKK2 deletion condition resulted in an increased or decreased enzymatic activity and CII-mediated respiration. This metabolic phenotype was reversed by cell-type-specific knockdown or overexpression of SDHB in respective CAMKK2 deleted cell types. CAMKK2 loss-of-function also affected the overall assembly of mitochondrial supercomplex involving ETS-associated proteins in a cell-type-specific manner, which correlated with differences in mitochondrial bioenergetics. CONCLUSION: This study provided novel insight into CAMKK2-mediated cell-type-specific differential regulation of mitochondrial function, facilitated by the differential expression, PTMs, and assembly of SDHs into megacomplex structures. Video Abstract.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Mitocôndrias/genética , Complexos Multiproteicos/genética , Succinato Desidrogenase/genética , Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica/genética , Células HEK293 , Células Hep G2 , Homeostase/genética , Humanos , Mitocôndrias/metabolismo , Consumo de Oxigênio/genética , Processamento de Proteína Pós-Traducional/genética , Proteômica
19.
Exp Mol Pathol ; 120: 104636, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838119

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative condition resulting in progressive cognitive decline. Pathological features include Aß plaques, neurofibrillary tangles, neuroinflammation and neuronal death. Purinergic receptors 7 and 4 (P2X7R and P2X4R) and calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) are implicated in neuronal death. We used immunohistochemistry to investigate the distribution of these proteins in neurones from frontal cortex of donors (n = 3/group; aged 79-83 years) who died with and without AD. Neurones were identified morphologically and immunoperoxidase staining was achieved using commercial antibodies. Immunoreactive neurones were counted for each protein by 2-3 raters blinded to the diagnoses. We observed no differences in percentages of P2X7R, P2X4R or CaMKK2 positive neurones (p = 0.2-0.99), but sections from individuals with AD had marginally fewer neurones (p = 0.10). Hence P2X7R, P2X4R or CaMKK2 appear to be expressed in neurones from older donors, but expression does not associate with AD.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Lobo Frontal/patologia , Células Piramidais/patologia , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Estudos de Casos e Controles , Feminino , Lobo Frontal/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Prognóstico , Células Piramidais/metabolismo
20.
Biochem J ; 477(17): 3453-3469, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32869834

RESUMO

Activation of AMP-activated protein kinase (AMPK) in endothelial cells by vascular endothelial growth factor (VEGF) via the Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) represents a pro-angiogenic pathway, whose regulation and function is incompletely understood. This study investigates whether the VEGF/AMPK pathway is regulated by cAMP-mediated signalling. We show that cAMP elevation in endothelial cells by forskolin, an activator of the adenylate cyclase, and/or 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases, triggers protein kinase A (PKA)-mediated phosphorylation of CaMKK2 (serine residues S495, S511) and AMPK (S487). Phosphorylation of CaMKK2 by PKA led to an inhibition of its activity as measured in CaMKK2 immunoprecipitates of forskolin/IBMX-treated cells. This inhibition was linked to phosphorylation of S495, since it was not seen in cells expressing a non-phosphorylatable CaMKK2 S495C mutant. Phosphorylation of S511 alone in these cells was not able to inhibit CaMKK2 activity. Moreover, phosphorylation of AMPK at S487 was not sufficient to inhibit VEGF-induced AMPK activation in cells, in which PKA-mediated CaMKK2 inhibition was prevented by expression of the CaMKK2 S495C mutant. cAMP elevation in endothelial cells reduced basal and VEGF-induced acetyl-CoA carboxylase (ACC) phosphorylation at S79 even if AMPK was not inhibited. Together, this study reveals a novel regulatory mechanism of VEGF-induced AMPK activation by cAMP/PKA, which may explain, in part, inhibitory effects of PKA on angiogenic sprouting and play a role in balancing pro- and anti-angiogenic mechanisms in order to ensure functional angiogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Colforsina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA