Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Microbiol ; 121(4): 781-797, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242855

RESUMO

Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.


Assuntos
Candida glabrata , Fluconazol , Fluconazol/metabolismo , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Azóis , ATPases Translocadoras de Prótons/metabolismo , Testes de Sensibilidade Microbiana
2.
Mol Microbiol ; 121(4): 696-716, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178569

RESUMO

Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.


Assuntos
Aminoácidos , Candida albicans , Feminino , Humanos , Candida albicans/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Candida/metabolismo , Prolina/metabolismo , Candida glabrata/metabolismo
3.
Antimicrob Agents Chemother ; 68(1): e0077823, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38095426

RESUMO

Vulvovaginal candidiasis (VVC) is a common condition among women. Fluconazole remains the dominant treatment option for VVC. Oteseconazole is a highly selective inhibitor of fungal CYP51. This randomized, double-blinded, phase 3 trial was conducted to evaluate the efficacy and safety of oteseconazole compared with fluconazole in treating severe VVC. Female subjects presenting with vulvovaginal signs and symptoms score of ≥7 and positive Candida infection determined by potassium hydroxide test or Gram staining were randomly assigned to receive oteseconazole (600 mg on D1 and 450 mg on D2) or fluconazole (150 mg on D1 and D4) in a 1:1 ratio. The primary endpoint was the proportion of subjects achieving therapeutic cure [defined as achieving both clinical cure (absence of signs and symptoms of VVC) and mycological cure (negative culture of Candida species)] at D28. A total of 322 subjects were randomized and 321 subjects were treated. At D28, a statistically significantly higher proportion of subjects achieved therapeutic cure in the oteseconazole group than in the fluconazole group (66.88% vs 45.91%; P = 0.0002). Oteseconazole treatment resulted in an increased proportion of subjects achieving mycological cure (82.50% vs 59.12%; P < 0.0001) and clinical cure (71.25% vs 55.97%; P = 0.0046) compared with fluconazole. The incidence of treatment-emergent adverse events was similar between the two groups. No subjects discontinued study treatment or withdrew study due to adverse events. Oteseconazole showed statistically significant and clinically meaningful superiority over fluconazole for the treatment of severe VVC and was generally tolerated.


Assuntos
Candidíase Vulvovaginal , Fluconazol , Feminino , Humanos , Fluconazol/farmacologia , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Antifúngicos/efeitos adversos , Candida , Administração Oral , Candida albicans
4.
J Clin Microbiol ; 62(2): e0114023, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38265207

RESUMO

Candida glabrata is one of the most common causes of systemic candidiasis, often resistant to antifungal medications. To describe the genomic context of emerging resistance, we conducted a retrospective analysis of 82 serially collected isolates from 33 patients from population-based candidemia surveillance in the United States. We used whole-genome sequencing to determine the genetic relationships between isolates obtained from the same patient. Phylogenetic analysis demonstrated that isolates from 29 patients were clustered by patient. The median SNPs between isolates from the same patient was 30 (range: 7-96 SNPs), while unrelated strains infected four patients. Twenty-one isolates were resistant to echinocandins, and 24 were resistant to fluconazole. All echinocandin-resistant isolates carried a mutation either in the FKS1 or FKS2 HS1 region. Of the 24 fluconazole-resistant isolates, 17 (71%) had non-synonymous polymorphisms in the PDR1 gene, which were absent in susceptible isolates. In 11 patients, a genetically related resistant isolate was collected after recovering susceptible isolates, indicating in vivo acquisition of resistance. These findings allowed us to estimate the intra-host diversity of C. glabrata and propose an upper boundary of 96 SNPs for defining genetically related isolates, which can be used to assess donor-to-host transmission, nosocomial transmission, or acquired resistance. IMPORTANCE In our study, mutations associated to azole resistance and echinocandin resistance were detected in Candida glabrata isolates using a whole-genome sequence. C. glabrata is the second most common cause of candidemia in the United States, which rapidly acquires resistance to antifungals, in vitro and in vivo.


Assuntos
Candidemia , Equinocandinas , Humanos , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida glabrata , Candidemia/microbiologia , Estudos Retrospectivos , Filogenia , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mutação , Genômica , Farmacorresistência Fúngica/genética
5.
Fungal Genet Biol ; 172: 103891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621582

RESUMO

Candida glabrata (Nakaseomyces glabrata) is an emergent and opportunistic fungal pathogen that colonizes and persists in different niches within its human host. In this work, we studied five clinical isolates from one patient (P7), that have a clonal origin, and all of which come from blood cultures except one, P7-3, obtained from a urine culture. We found phenotypic variation such as sensitivity to high temperature, oxidative stress, susceptibility to two classes of antifungal agents, and cell wall porosity. Only isolate P7-3 is highly resistant to the echinocandin caspofungin while the other four isolates from P7 are sensitive. However, this same isolate P7-3, is the only one that displays susceptibility to fluconazole (FLC), while the rest of the isolates are resistant to this antifungal. We sequenced the PDR1 gene which encodes a transcription factor required to induce the expression of several genes involved in the resistance to FLC and found that all the isolates encode for the same Pdr1 amino acid sequence except for the last isolate P7-5, which contains a single amino acid change, G1099C in the putative Pdr1 transactivation domain. Consistent with the resistance to FLC, we found that the CDR1 gene, encoding the main drug efflux pump in C. glabrata, is highly overexpressed in the FLC-resistant isolates, but not in the FLC-sensitive P7-3. In addition, the resistance to FLC observed in these isolates is dependent on the PDR1 gene. Additionally, we found that all P7 isolates have a different proportion of cell wall carbohydrates compared to our standard strains CBS138 and BG14. In P7 isolates, mannan is the most abundant cell wall component, whereas ß-glucan is the most abundant component in our standard strains. Consistently, all P7 isolates have a relatively low cell wall porosity compared to our standard strains. These data show phenotypic and genotypic variability between clonal isolates from different niches within a single host, suggesting microevolution of C. glabrata during an infection.


Assuntos
Antifúngicos , Candida glabrata , Farmacorresistência Fúngica , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Antifúngicos/farmacologia , Humanos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fluconazol/farmacologia , Parede Celular/genética , Parede Celular/efeitos dos fármacos , Candidíase/microbiologia , Caspofungina/farmacologia , Evolução Molecular , Estresse Oxidativo/genética , Equinocandinas/farmacologia , Fatores de Transcrição/genética
6.
BMC Microbiol ; 24(1): 154, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704559

RESUMO

BACKGROUND: Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS: In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS: The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS: The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Candida glabrata , Escherichia coli , Fluconazol , Glucosídeos Iridoides , Iridoides , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Glucosídeos Iridoides/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/fisiologia , Candida glabrata/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Iridoides/farmacologia , Fluconazol/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Antibacterianos/farmacologia , Microscopia Eletrônica de Varredura
7.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38318635

RESUMO

Followed by Candida albicans, Candida glabrata ranks as the second major species contributing to invasive candidiasis. Given the higher medical burden and lower susceptibility to azoles in C. glabrata infections, identifying these infections is critical. From 2016 to 2021, patients with deep-seated candidiasis due to C. glabrata and non-glabrata Candida met the criteria to be enrolled in the study. Clinical data were randomly divided into training and validation cohorts. A predictive model and nomogram were constructed using R software based on the stepwise algorithm and logistic regression. The performance of the model was assessed by the area under the receiver operating characteristic curve and decision curve analysis (DCA). A total of 197 patients were included in the study, 134 of them infected with non-glabrata Candida and 63 with C. glabrata. The predictive model for C. glabrata infection consisted of gastrointestinal cancer, co-infected with bacteria, diabetes mellitus, and kidney dysfunction. The specificity was 84.1% and the sensitivity was 61.5% in the validation cohort when the cutoff value was set to the same as the training cohort. Based on the model, treatment for patients with a high-risk threshold was better than 'treatment for all' in DCA, while opting low-risk patients out of treatment was also better than 'treatment for none' in opt-out DCA. The predictive model provides a rapid method for judging the probability of infections due to C. glabrata and will be of benefit to clinicians making decisions about therapy strategies.


Assuntos
Candidíase Invasiva , Neoplasias , Humanos , Candida glabrata , Antifúngicos/uso terapêutico , Candida , Candida albicans , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/veterinária , Neoplasias/complicações , Neoplasias/veterinária
8.
Med Mycol ; 62(6)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935913

RESUMO

Recognising the growing global burden of fungal infections, the World Health Organization (WHO) established an advisory group consisting of experts in fungal diseases to develop a Fungal Priority Pathogen List. Pathogens were ranked based on their research and development needs and perceived public health importance using a series of global surveys and pathogen characteristics derived from systematic reviews. This systematic review evaluates the features and global impact of invasive disease caused by Candida glabrata (Nakaseomyces glabrata). PubMed and Web of Science were searched for studies reporting on mortality, morbidity (hospitalization and disability), drug resistance (including isolates from sterile and non-sterile sites, since these reflect the same organisms causing invasive infections), preventability, yearly incidence, diagnostics, treatability, and distribution/emergence in the last 10 years. Candida glabrata (N. glabrata) causes difficult-to-treat invasive infections, particularly in patients with underlying conditions such as immunodeficiency, diabetes, or those who have received broad-spectrum antibiotics or chemotherapy. Beyond standard infection prevention and control measures, no specific preventative measures have been described. We found that infection is associated with high mortality rates and that there is a lack of data on complications and sequelae. Resistance to azoles is common and well described in echinocandins-in both cases, the resistance rates are increasing. Candida glabrata remains mostly susceptible to amphotericin and flucytosine. However, the incidence of the disease is increasing, both at the population level and as a proportion of all invasive yeast infections, and the increases appear related to the use of antifungal agents.


Assuntos
Antifúngicos , Candida glabrata , Farmacorresistência Fúngica , Organização Mundial da Saúde , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase/epidemiologia , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Saúde Global , Incidência
9.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308518

RESUMO

Candida glabrata is the most common non-albicans Candida species that causes vulvovaginal candidiasis (VVC). Given the intrinsically low susceptibility of C. glabrata to azole drugs, investigations into C. glabrata prevalence, fungal susceptibility profile, and molecular epidemiology are necessary to optimise the treatment of VVC. This molecular epidemiological study was conducted to determine antifungal drug profile, single nucleotide polymorphisms (SNPs) associated with phenotypic antifungal resistance and epidemic diversity of C. glabrata isolates from women with VVC in Namibia. Candida glabrata isolates were identified using phenotypic and molecular methods. Antifungal susceptibility of strains was determined for fluconazole, itraconazole, amphotericin B, and anidulafungin. Whole genome sequencing was used to determine SNPs in antifungal resistance genes and sequence type (ST) allocation. Among C. glabrata isolates, all (20/20; 100%) exhibited phenotypic resistance to the azole class antifungal drug, (fluconazole), and phenotypic susceptibility to the polyene class (amphotericin B), and the echinocandins (anidulafungin). Non-synonymous SNPs were identified in antifungal resistance genes of all fluconazole-resistant C. glabrata isolates including ERG6 (15%), ERG7 (15%), CgCDR1 (25%), CgPDR1 (60%), SNQ2 (10%), FKS1 (5.0%), FKS2 (5.0%), CgFPS1 (5.0%), and MSH2 (15%). ST15 (n = 8/20, 40%) was predominant. This study provides important insight into phenotypic and genotypic antifungal resistance across C. glabrata isolates from women with VVC in Namibia. In this study, azole resistance is determined by an extensive range of SNPs, while the observed polyene and echinocandin resistance-associated SNPs despite phenotypic susceptibility require further investigation.


Candida glabrata is inherently resistant to azole drugs. In this study, we identified a clone that was predominant in women with vulvovaginal candidiasis in Namibia, and that harboured various mutations in resistance-associated genes. This study provides important insight into antifungal resistance across C. glabrata isolates in a sub-Sahara African setting.


Assuntos
Antifúngicos , Candidíase Vulvovaginal , Feminino , Humanos , Antifúngicos/farmacologia , Candida glabrata , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/veterinária , Fluconazol , Anfotericina B , Antibacterianos , Anidulafungina , Epidemiologia Molecular , Namíbia/epidemiologia , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana , Equinocandinas , Azóis , Polienos , Farmacorresistência Fúngica/genética
10.
Mycoses ; 67(6): e13750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813959

RESUMO

BACKGROUND: The prevalence of Candida glabrata healthcare-associated infections is on the rise worldwide and in Lebanon, Candida glabrata infections are difficult to treat as a result of their resistance to azole antifungals and their ability to form biofilms. OBJECTIVES: The first objective of this study was to quantify biofilm biomass in the most virulent C. glabrata isolates detected in a Lebanese hospital. In addition, other pathogenicity attributes were evaluated. The second objective was to identify the mechanisms of azole resistance in those isolates. METHODS: A mouse model of disseminated systemic infection was developed to evaluate the degree of virulence of 41 azole-resistant C. glabrata collected from a Lebanese hospital. The most virulent isolates were further evaluated alongside an isolate having attenuated virulence and a reference strain for comparative purposes. A DNA-sequencing approach was adopted to detect single nucleotide polymorphisms (SNPs) leading to amino acid changes in proteins involved in azole resistance and biofilm formation. This genomic approach was supported by several phenotypic assays. RESULTS: All chosen virulent isolates exhibited increased adhesion and biofilm biomass compared to the isolate having attenuated virulence. The amino acid substitutions D679E and I739N detected in the subtelomeric silencer Sir3 are potentially involved- in increased adhesion. In all isolates, amino acid substitutions were detected in the ATP-binding cassette transporters Cdr1 and Pdh1 and their transcriptional regulator Pdr1. CONCLUSIONS: In summary, increased adhesion led to stable biofilm formation since mutated Sir3 could de-repress adhesins, while decreased azole susceptibility could result from mutations in Cdr1, Pdh1 and Pdr1.


Assuntos
Antifúngicos , Biofilmes , Candida glabrata , Candidíase , Farmacorresistência Fúngica , Mutação , Biofilmes/crescimento & desenvolvimento , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Candida glabrata/patogenicidade , Candida glabrata/fisiologia , Líbano , Animais , Camundongos , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Humanos , Virulência/genética , Candidíase/microbiologia , Proteínas Fúngicas/genética , Polimorfismo de Nucleotídeo Único , Modelos Animais de Doenças , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Hospitais , Feminino
11.
Mycoses ; 67(1): e13672, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897148

RESUMO

The growing threat of antimicrobial resistance (AMR) is a global concern. With AMR directly causing 1.27 million deaths in 2019 and projections of up to 10 million annual deaths by 2050, optimising infectious disease treatments is imperative. Prudent antimicrobial use, including treatment duration, can mitigate AMR emergence. This is particularly critical in candidemia, a severe condition with a 45% crude mortality rate, as the 14-day minimum treatment period has not been challenged in randomised comparison. A comprehensive literature search was conducted in August 2023, revealing seven original articles and two case series discussing treatment durations of less than 14 days for candidemia. No interventional trials or prospective observational studies assessing shorter durations were found. Historical studies showed varying candidemia treatment durations, questioning the current 14-day minimum recommendation. Recent research observed no significant survival differences between patients receiving shorter or longer treatment, emphasising the need for evidence-based guidance. Treatment duration reduction post-blood culture clearance could decrease exposure to antifungal drugs, limiting selection pressure, especially in the context of emerging multiresistant Candida species. Candidemia's complexity, emerging resistance and potential for shorter in-hospital stays underscore the urgency of refining treatment strategies. Evidence-driven candidemia treatment durations are imperative to balance efficacy with resistance prevention and ensure the longevity of antifungal therapies. Further research and clinical trials are needed to establish evidence-based guidelines for candidemia treatment duration.


Assuntos
Candidemia , Humanos , Candidemia/microbiologia , Antifúngicos/uso terapêutico , Duração da Terapia , Testes de Sensibilidade Microbiana , Candida , Estudos Retrospectivos , Fatores de Risco , Estudos Observacionais como Assunto
12.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473787

RESUMO

The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, ß-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of ß-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of ß-aescin with alkylamidobetaines was examined. It has been shown that the combination of ß-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both ß-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.


Assuntos
Antifúngicos , Candida glabrata , Antifúngicos/farmacologia , Escina/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Biofilmes
13.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3021-3030, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-39041162

RESUMO

This study aimed to investigate the protective effect and its underlying mechanism of n-butanol extract of Pulsatilla Decoction(BEPD) containing medicinal serum on vaginal epithelial cells under Candida glabrata stimulation via the epidermal growth factor receptor/mitogen activated protein kinase( EGFR/MAPK) pathway based on transcriptomics. A vulvovaginal candidiasis(VVC) mouse model was established first and transcriptome sequencing was performed for the vaginal mucosa tissues to analyze the gene expression differences among the control, VVC model, and BEPD intervention groups. Simultaneously, BEPD-containing serum and fluconazole-containing serum were prepared. A431 cells were divided into the control, model, blank serum, fluconazole-containing serum, BEPD-containing serum, EGFR agonist and EGFR inhibitor groups. Additionally, in vitro experiments were conducted using BEPD-containing serum, fluconazole-containing serum, and an EGFR agonist and inhibitor to investigate the intervention mechanisms of BEPD on C. glabrata-induced vaginal epithelial cell damage. Cell counting kit-8(CCK-8) assay was utilized to determine the safe concentrations of C. glabrata, drug-containing serum, and compounds on A431 cells. Enzyme-linked immunosorbent assay(ELISA)was employed to measure the expression levels of interleukin(IL)-1ß, IL-6, granulocyte-macrophage colony-stimulating factor(GMCSF), granulocyte CSF(G-CSF), chemokine(C-X-C motif) ligand 20(CCL20), and lactate dehydrogenase(LDH). Gram staining was used to evaluate the adhesion of C. glabrata to vaginal epithelial cells. Flow cytometry was utilized to assess the effect of C.glabrata on A431 cell apoptosis. Based on the transcriptomics results, immunofluorescence was performed to measure the expressions of p-EGFR and p-ERK1/2 proteins, while Western blot validated the expressions of p-EGFR, p-ERK1/2, p-C-Fos, p-P38, Bax and Bcl-2 proteins. Sequencing results showed that compared with the VVC model, BEPD treatment up-regulated 1 075 genes and downregulated 927 genes, mainly enriched in immune-inflammatory pathways, including MAPK. Mechanistically, BEPD significantly reduced the expression of p-EGFR, p-ERK1/2, p-C-Fos and p-P38, as well as the secretion of IL-1ß, IL-6, GM-CSF, G-CSF and CCL20, LDH release induced by C. glabrata, and the adhesion of C. glabrata to A431 cells, suggesting that BEPD exerts a protective effect on vaginal epithelial cells damaged by C. glabrata infection by modulating the EGFR/MAPK axis. In addition, BEPD downregulated the pro-apoptotic protein Bax expression and up-regulated the anti-apoptotic protein Bcl-2 expression, leading to a reduction in C. glabrata-induced cell apoptosis. In conclusion, this study reveals that the intervention of BEPD in C. glabrata-induced VVC may be attributed to its regulation of the EGFR/MAPK pathway, which protects vaginal epithelial cells.


Assuntos
Candida albicans , Células Epiteliais , Receptores ErbB , Pulsatilla , Vagina , Feminino , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Vagina/microbiologia , Vagina/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Camundongos , Humanos , Animais , Pulsatilla/química , Transcriptoma/efeitos dos fármacos , 1-Butanol/química , Medicamentos de Ervas Chinesas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética
14.
Int J Med Microbiol ; 313(6): 151589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37952279

RESUMO

Candida glabrata is believed to be the underlying cause of many human ailments, including oral, gastrointestinal, and vaginal disorders. C. glabrata-caused deep-seated infections, coupled with its resistance to antifungal drugs, may contribute to a high mortality rate. Resveratrol is a polyphenol and can achieve better therapeutic effects when administered in combination with micafungin, but the underlying molecular mechanisms remain unknown. Here, we investigate the effects of varying doses of resveratrol on the proliferation, apoptosis, and activity of macrophages, which were co-cultured with micafungin-pretreated C. glabrata. Resveratrol can restore the decreased proliferative activity of macrophages caused by the phagocytosis of C. glabrata. Further investigations demonstrated that this restoration ability exhibited a dose-dependent manner, reaching the highest level at 200 µM of resveratrol. Resveratrol tended to be more effective in inhibiting macrophage apoptosis and reducing reactive oxygen species (ROS) levels with concentration increases. In addition, at medium concentrations, resveratrol may down-regulate the expression of most inflammatory cytokines, whereas at high concentrations, it started to exert pro-inflammatory functions by up-regulating their expressions. Macrophages may shift from an anti-inflammatory (M2) phenotype to an inflammatory (M1) phenotype by resveratrol at 200 µM, and from M1 to M2 at 400 µM. Our research shows that resveratrol with micafungin are effective in treating C. glabrata infections. The resveratrol-micafungin combination can reduce the production of ROS, and promote the proliferation, inhibit the apoptosis, and activate the polarization of macrophages in a dose-dependent manner. This study offers insights into how this combination works and may provide possible direction for further clinical application of the combination.


Assuntos
Candida glabrata , Equinocandinas , Feminino , Humanos , Micafungina/farmacologia , Candida glabrata/genética , Equinocandinas/farmacologia , Resveratrol/farmacologia , Espécies Reativas de Oxigênio , Antifúngicos/farmacologia , Macrófagos , Fagocitose
15.
BMC Microbiol ; 23(1): 317, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891489

RESUMO

BACKGROUND: Candida glabrata which belongs to normal microbiota, has caused significant concern worldwide due to its high prevalence and drug resistance in recent years. C. glabrata has developed many strategies to evade the clearance of the host immune system, thereby causing persistent infection. Although coping with the induced DNA damage is widely acknowledged to be important, the underlying mechanisms remain unclear. RESULTS: The present study provides hitherto undocumented evidence of the importance of the regulatory subunits of CgCK2 (CgCkb1 and CgCkb2) in response to DNA damage. Deletion of CgCKB1 or CgCKB2 enhanced cellular apoptosis and DNA breaks and led to cell cycle delay. In addition, deficiencies in survival upon phagocytosis were observed in Δckb1 and Δckb2 strains. Consistently, disruption of CgCKB1 and CgCKB2 attenuated the virulence of C. glabrata in mouse models of invasive candidiasis. Furthermore, global transcriptional profiling analysis revealed that CgCkb1 and CgCkb2 participate in cell cycle resumption and genomic stability. CONCLUSIONS: Overall, our findings suggest that the response to DNA damage stress is crucial for C. glabrata to survive in macrophages, leading to full virulence in vivo. The significance of this work lies in providing a better understanding of pathogenicity in C. glabrata-related candidiasis and expanding ideas for clinical therapies.


Assuntos
Candida glabrata , Candidíase , Animais , Camundongos , Candida glabrata/genética , Candida glabrata/metabolismo , Virulência/genética , Fagocitose , Macrófagos
16.
BMC Microbiol ; 23(1): 341, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974063

RESUMO

BACKGROUND: Candida glabrata is an important cause of invasive candidiasis. Echinocandins are the first-line treatment of invasive candidiasis caused by C. glabrata. The epidemiological echinocandin sensitivity requires long-term surveillance and the understanding about whole genome characteristics of echinocandin non-susceptible isolates was limited. RESULTS: The present study investigated the echinocandin susceptibility of 1650 C. glabrata clinical isolates in China from August 2014 to July 2019. The in vitro activity of micafungin was significantly better than those of caspofungin and anidulafungin (P < 0.001), assessed by MIC50/90 values. Whole genome sequencing was conducted on non-susceptible isolates and geography-matched susceptible isolates. Thirteen isolates (0.79%) were resistant to at least one echinocandin. Six isolates (0.36%) were solely intermediate to caspofungin. Common evolutionary analysis of echinocandin-resistant and echinocandin-intermediate isolates revealed genes related with reduced caspofungin sensitivity, including previously identified sphinganine hydroxylase encoding gene SUR2. Genome-wide association study identified SNPs at subtelometric regions that were associated with echinocandin non-susceptibility. In-host evolution of echinocandin resistance of serial isolates revealed an enrichment for non-synonymous mutations in adhesins genes and loss of subtelometric regions containing adhesin genes. CONCLUSIONS: The echinocandins are highly active against C. glabrata in China with a resistant rate of 0.79%. Echinocandin non-susceptible isolates carried common evolved genes which are related with reduced caspofungin sensitivity. In-host evolution of C. glabrata accompanied intensive changing of adhesins profile.


Assuntos
Candidíase Invasiva , Equinocandinas , Humanos , Equinocandinas/farmacologia , Equinocandinas/genética , Equinocandinas/uso terapêutico , Candida glabrata/genética , Caspofungina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudo de Associação Genômica Ampla , Testes de Sensibilidade Microbiana , Candidíase Invasiva/tratamento farmacológico , China , Farmacorresistência Fúngica/genética
17.
BMC Microbiol ; 23(1): 99, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37046215

RESUMO

BACKGROUND: As highly-conserved types of lipid flippases among fungi, P4-ATPases play a significant role in various cellular processes. Cdc50 acts as the regulatory subunit of flippases, forming heterodimers with Drs2 to translocate aminophospholipids. Cdc50 homologs have been reported to be implicated in protein trafficking, drug susceptibility, and virulence in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans. It is likely that Cdc50 has an extensive influence on fungal cellular processes. The present study aimed to determine the function of Cdc50 in Candida glabrata by constructing a Δcdc50 null mutant and its complemented strain. RESULTS: In Candida glabrata, the loss of Cdc50 led to difficulty in yeast budding, probably caused by actin depolarization. The Δcdc50 mutant also showed hypersensitivity to azoles, caspofungin, and cell wall stressors. Further experiments indicated hyperactivation of the cell wall integrity pathway in the Δcdc50 mutant, which elevated the major cell wall contents. An increase in exposure of ß-(1,3)-glucan and chitin on the cell surface was also observed through flow cytometry. Interestingly, we observed a decrease in the phagocytosis rate when the Δcdc50 mutant was co-incubated with THP-1 macrophages. The Δcdc50 mutant also exhibited weakened virulence in nematode survival tests. CONCLUSION: The results suggested that the lipid flippase subunit Cdc50 is implicated in yeast budding and cell wall integrity in C. glabrata, and thus have a broad influence on drug susceptibility and virulence. This work highlights the importance of lipid flippase, and offers potential targets for new drug research.


Assuntos
Adenosina Trifosfatases , Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Saccharomyces cerevisiae/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Caspofungina , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
18.
Microb Pathog ; 177: 106037, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842517

RESUMO

The incidence of vaginal infection caused by Candida species has considerably increased over the past two decades. Candida albicans is the main cause of vulvovaginal candidiasis (VVC); however, non-albicans Candida (NAC) species, such as Candida glabrata and Candida tropicalis, are now frequently identified in VVC patients. Although the vaginal microbiome (VMB) was well studied in Candida albicans-associated VVC patients, the fungal influence on bacterial communities of NAC species-associated VVC and potential microbial interplay contributing to VVC pathology remain elusive. We characterized VMB via Candida albicans and NAC species-associated VVC patients, as Candida albicans (CA, n = 16), Candida glabrata (CG, n = 16), Candida tropicalis (CT, n = 4), and recruiting healthy (CON, n = 20) women as references of dysbiosis and eubiosis. The bacterial diversity of the vagina in the CG group significantly declined. Further, all VVC patients have a higher abundance of Lactobacillus iners, especially for the CG group. Meanwhile, the predicted functions in all VVC are toned which may be associated with a disruption in the bacterial network. In conclusion, according to the taxonomic analysis, we found that the vaginal microbiome in C. glabrata-associated VVC women is different from that of other Candida species-associated VVC women, implying a different pathogenesis.


Assuntos
Candidíase Vulvovaginal , Humanos , Feminino , Candidíase Vulvovaginal/microbiologia , Candida , Antifúngicos/uso terapêutico , Vagina/microbiologia , Candida albicans , Candida glabrata , Candida tropicalis
19.
Med Mycol ; 61(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37844959

RESUMO

Candidiasis is one of the most important fungal diseases and generally refers to diseases of the skin or mucosal tissues caused by Candida species. Candida glabrata is an opportunistic human fungal pathogen. Infection with C. glabrata has significantly increased due to innate antifungal drug tolerance and the ability to adhere to mucocutaneous surfaces. Spt-Ada-Gcn5 acetyltransferase complex contains two different post-translational modifications, histone acetylation (HAT) module and deubiquitination (DUB) module, which are decisive in gene regulation and highly conserved in eukaryotes. Previous research in our laboratory found that the HAT module ADA2 could regulate C. glabrata oxidative stress tolerance, drug tolerance, cell wall integrity, and virulence. However, the roles of the DUB module that is comprised of UBP8, SGF11, SGF73, and SUS1 genes in those phenotypes are not yet understood. In this study, we found that DUB module genes UBP8, SGF11, and SUS1, but not SGF73 positively regulate histone H2B DUB. Furthermore, ubp8, sgf11, and sus1 mutants exhibited decreased biofilm formation and sensitivity to cell wall-perturbing agent sodium dodecyl sulfate and antifungal drug amphotericin B. In addition, the sgf73 mutant showed increased biofilm formation but was susceptible to oxidative stresses, antifungal drugs, and cell wall perturbing agents. The ubp8, sgf11, and sus1 mutants showed marginal hypovirulence, whereas the sgf73 mutant exhibited virulence similar to the wild type in a murine systemic infection model. In conclusion, the C. glabrata DUB module plays distinct roles in H2B ubiquitination, oxidative stress response, biofilm formation, cell wall integrity, and drug tolerance, but exhibits minor roles in virulence.


In this study, we found that the deubiquitination (DUB) module of the Spt-Ada-Gcn5 acetyltransferase complex is involved in H2B DUB, oxidative stress response, biofilm formation, cell wall integrity, and drug tolerance in the human fungal pathogen Candida glabrata. The multiple functions controlled by the DUB module exhibit conserved and divergent functions between Saccharomyces cerevisiae, C. albicans, and C. glabrata.


Assuntos
Candida glabrata , Proteínas de Saccharomyces cerevisiae , Humanos , Animais , Camundongos , Candida glabrata/genética , Transativadores/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Histona Acetiltransferases/genética , Histonas/metabolismo , Biofilmes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
20.
Med Mycol ; 61(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715154

RESUMO

Candida glabrata is an opportunistic fungal pathogen and the second most prevalent species isolated from candidiasis patients. C. glabrata has intrinsic tolerance to antifungal drugs and oxidative stresses and the ability to adhere to mucocutaneous surfaces. However, knowledge about the regulation of its virulence traits is limited. The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex modulates gene transcription by histone acetylation through the histone acetyltransferase (HAT) module comprised of Gcn5-Ada2-Ada3. Previously, we showed that the ada2 mutant was hypervirulent but displayed decreased tolerance to antifungal drugs and cell wall perturbing agents. In this study, we further characterized the functions of Ada3 and Gcn5 in C. glabrata. We found that single, double, or triple deletions of the HAT module, as expected, resulted in a decreased level of acetylation on histone H3 lysine 9 (H3K9) and defective growth. These mutants were more susceptible to antifungal drugs, oxidative stresses, and cell wall perturbing agents compared with the wild-type. In addition, HAT module mutants exhibited enhanced agar invasion and upregulation of adhesin and proteases encoding genes, whereas the biofilm formation of those mutants was impaired. Interestingly, HAT module mutants exhibited enhanced induction of catalases (CTA1) expression upon treatment with H2O2 compared with the wild-type. Lastly, although ada3 and gcn5 exhibited marginal hypervirulence, the HAT double and triple mutants were hypervirulent in a murine model of candidiasis. In conclusion, the HAT module of the SAGA complex plays unique roles in H3K9 acetylation, drug tolerance, oxidative stress response, adherence, and virulence in C. glabrata.


The present study characterizes the functions of the conserved histone acetyltransferase module in the pathogenesis of the pathogenic yeast Candida glabrata. The results indicated that this module has divergent roles in the pathogenesis of C. glabrata.


Assuntos
Candidíase , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Candida glabrata/genética , Fatores de Transcrição/genética , Antifúngicos , Peróxido de Hidrogênio , Candidíase/veterinária , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA