Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36829750

RESUMO

To enable rapid osteointegration in bioceramic implants and to give them osteoinductive properties, scaffolds with defined micro- and macroporosity are required. Pores or pore networks promote the integration of cells into the implant, facilitating the supply of nutrients and the removal of metabolic products. In this paper, scaffolds are created from ß-tricalciumphosphate (ß-TCP) and in a novel way, where both the micro- and macroporosity are adjusted simultaneously by the addition of pore-forming polymer particles. The particles used are 10-40 wt%, spherical polymer particles of polymethylmethacrylate (PMMA) (Ø = 5 µm) and alternatively polymethylsilsesquioxane (PMSQ) (Ø = 2 µm), added in the course of ß-TCP slurry preparation. The arrangement of hydrophobic polymer particles at the interface of air bubbles was incorporated during slurry preparation and foaming of the slurry. The foam structures remain after sintering and lead to the formation of macro-porosity in the scaffolds. Furthermore, decomposition of the polymer particles during thermal debindering results in the formation of an additional network of interconnecting micropores in the stabilizing structures. It is possible to adjust the porosity easily and quickly in a range of 1.2-140 µm with a relatively low organic fraction. The structures thus prepared showed no cytotoxicity nor negative effects on the biocompatibility.

2.
Food Res Int ; 164: 112369, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737956

RESUMO

Oleogels containing less saturated and trans-fats were considered as an ideal option to replace the solid fats in foods. In this research, oleogel was fabricated by dispersing soy fiber particles (SFP) in soy oil, and further it was used in bread preparation. Effect of the particle size, particle content and the second fluid content on the formation of oleogels were evaluated, based on the appearance and rheological properties. Results showed that the suspension of SFP in soy oil (24%, w/w) could be transformed into gel-like state, upon the addition of the second fluid. The SFP based networks were dominated by the capillary force which was originated from the second fluid. The rheological properties and yield stress of the oleogels could be modulated by particle size and particle content of SFP in oil phase, as well as the second fluid content in the system. When the oleogels were applicated in bread preparation, a layered structure could be formed in the bread, indicating the possibility of replacing the solid fats in bakery products by our oleogels. Our results offered a feasibility approach for oil structuring with natural raw materials, and developed a new approach to replace the solid fats in foods.


Assuntos
Compostos Orgânicos , Óleo de Soja , Compostos Orgânicos/química , Óleo de Soja/química , Pão , Fenômenos Químicos
3.
J Colloid Interface Sci ; 582(Pt B): 1231-1242, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32950839

RESUMO

HYPOTHESIS: Lateral accumulation and film defects during drying of hard particle coatings is a common problem, typically solved using polymeric additives and surface active ingredients, which require further processing of the dried film. Capillary suspensions with their tunable physical properties, devoid of polymers, offer new pathways in producing uniform and defect free particulate coatings. EXPERIMENTS: We investigated the effect of small amounts of secondary liquid on the coating's drying behavior. Stress build-up and weight loss in a temperature and humidity controlled drying chamber were simultaneously measured. Changes in the coating's reflectance and height profile over time were related with the weight loss and stress curve. FINDINGS: Capillary suspensions dry uniformly without defects. Lateral drying is inhibited by the high yield stress, causing the coating to shrink to an even height. The bridges between particles prevent air invasion and extend the constant drying period. The liquid in the lower layers is transported to the interface via corner flow within surface pores, leading to a partially dry layer near the substrate while the pores above are still saturated. Using capillary suspensions for hard particle coatings results in more uniform, defect free films with better printing characteristics, rendering high additive content obsolete.

4.
ACS Appl Mater Interfaces ; 11(41): 38092-38102, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31566949

RESUMO

Stretchable conductors are required for next-generation soft electronics. Achieving both high electrical conductivity and high stretchability in conductors composed of elastomers and conductive fillers, however, is challenging. Here, a generic, versatile strategy is reported for producing ultrastretchable conductors exhibiting both superior electrical conductivity (>103 S/cm) and stretchability (>1600%). This is achieved by adding small amounts of immiscible secondary fluid into silver (Ag)-filled inks. Capillary forces in these ternary systems induce the self-assembly of conductive particle networks at a low percolation threshold (6-7 vol %), cutting silver consumption by more than 2/3 compared to conventional conductive elastomers. Ag-filled polydimethylsiloxane exhibits superior cyclic durability sustaining 100% tensile strain for 1000 cycles with only a minor loss of conductivity. Ag-filled thermoplastic polyurethane displays unprecedented reversibility with nonretarded switching from conductive to nonconductive states during repeated stretching up to 200% strain. Patterned strain sensors and conductive wirings were 3D-printed to demonstrate the technical feasibility.

5.
ACS Appl Mater Interfaces ; 9(50): 44152-44160, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29210563

RESUMO

We demonstrate that stimulus-responsive capillary-structured materials can be formed from hydrophobized calcium carbonate particles suspended in a non-polar phase (silicone oil) and bridged by very small amounts of a hydrogel as the secondary aqueous phase. Inclusion of thermally responsive polymers into the aqueous phase yielded a capillary-structured suspension whose rheology is controlled by a change in temperature and can increase its complex modulus by several orders of magnitude because of the gelation of the capillary bridges between the solid particles. We demonstrate that the rheology of the capillary suspension and its response upon temperature changes can be controlled by the gelling properties as little as 0.1 w/w % of the secondary aqueous phase containing 2 wt % of the gelling carbohydrate. Doping the secondary (aqueous) phase with methyl cellulose, which gels at elevated temperatures, gave capillary-structured materials whose viscosity and structural strength can increase by several orders of magnitude as the temperature is increased past the gelling temperature of the methyl cellulose solution. Increasing the methyl cellulose concentration from 0 to 2 w/w % in the secondary (aqueous) phase increases the complex modulus and the yield stress of the capillary suspension of 10 w/w % hydrophobized calcium carbonate in silicone oil by 2 orders of magnitude at a fixed temperature. By using an aqueous solution of a low melting point agarose as a secondary liquid phase, which melts as the temperature is raised, we produced capillary-structured materials whose viscosity and structural strength can decrease by several orders of magnitude as the temperature is increased past the melting temperature of the agarose solution. The development of thermally responsive capillary suspensions can find potential applications in structuring of smart home and personal care products as well as in temperature-triggered change in rheology and release of flavors in foods and actives in pharmaceutical formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA