Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747174

RESUMO

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Assuntos
Fósforo , Raízes de Plantas , Silicatos , Microbiologia do Solo , Solo , Fósforo/metabolismo , Solo/química , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Silicatos/metabolismo , Micorrizas/fisiologia , Compostos de Cálcio , Carbono/metabolismo
2.
Ecotoxicol Environ Saf ; 274: 116229, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508101

RESUMO

Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.


Assuntos
Bacillus cereus , Carbono , Sequestro de Carbono , Ribulose-Bifosfato Carboxilase , Solo/química , Carvão Vegetal/química , Agricultura/métodos
3.
Glob Chang Biol ; 28(3): 1162-1177, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726814

RESUMO

Widespread adoption of improved cropland management measures is advocated to increase soil organic carbon (SOC) levels, thereby improving soil fertility and mitigating climate change. However, spatially explicit insight on management impacts is limited, which is crucial for region-specific and climate-smart practices. To overcome these limitations, we combined global meta-analytical results on improved management practices on SOC sequestration with spatially explicit data on current management practices and potential areas for the adoption of these measures. We included (a) fertilization practices, i.e., use of organic fertilizer compared to inorganic fertilizer or no fertilizer, (b) soil tillage practices, i.e., no-tillage relative to high or intermediate intensity tillage, and (c) crop management practices, i.e., use of cover crops and enhanced crop residue incorporation. We show that the estimated global C sequestration potential varies between 0.44 and 0.68 Gt C yr-1 , assuming maximum complementarity among all measures taken. A more realistic estimate, not assuming maximum complementarity, is from 0.28 to 0.43 Gt C yr-1 , being on the lower end of the current range of 0.1-2 Gt C yr-1 found in the literature. One reason for the lower estimate is the limited availability of manure that has not yet been recycled. Another reason is the limited area for the adoption of improved measures, considering their current application and application limitations. We found large regional differences in carbon sequestration potential due to differences in yield gaps, SOC levels, and current practices applied. The highest potential is found in regions with low crop production, low initial SOC levels, and in regions where livestock manure and crop residues are only partially recycled. Supporting previous findings, we highlight that to encourage both soil fertility and SOC sequestration, it is best to focus on agricultural soils with large yield gaps and/or where SOC values are below levels that may limit crop production.


Assuntos
Sequestro de Carbono , Solo , Agricultura/métodos , Carbono/metabolismo , Produtos Agrícolas/metabolismo , Fertilizantes/análise , Solo/química
4.
Environ Monit Assess ; 194(8): 562, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789436

RESUMO

A series of complex organic fractions with different physical and chemical properties make up soil organic carbon (SOC), which plays a vital role in climate change and the global carbon cycle. Different SOC fractions have different stability and respond differently to vegetation succession. This research was carried out to assess the impacts of vegetation succession on SOC dynamics in the Qingmuguan karst valley area, southwest China. Soil samples were collected from four typical vegetation succession stages, including farmland, grassland, shrubland, and forest. The total SOC content and four oxidizable SOC fractions were measured. Results showed that the total SOC content and storage under farmland were highest, followed by forest and shrubland, and the grassland had the lowest total SOC content and storage. The SOC sequestration potential under different vegetation types in the study area was grassland (26.32 Mg C ha-1) > shrubland (9.64 Mg C ha-1). All SOC content, storage, and fractions showed a decrease with the increase of soil depth over the 0-50 cm in the study area. The four SOC fractions under forest at topsoil (0-10 cm) were higher than that under the other vegetation types. Compared with the other land uses, the farmland had the highest stable oxidizable SOC fractions (F3 and F4) at the 10-50-cm depth, while the shrubland had the highest active oxidizable SOC fractions (F1 and F2). In terms of the lability index of SOC, shrubland was the largest, followed by grassland and forest, and farmland was the smallest. These results provide essential information about SOC fractions and stability changes resulting from changes of vegetation types in a karst valley area of southwest China. It also supplements our understanding of soil carbon sequestration in vegetation succession.


Assuntos
Carbono , Solo , Carbono/análise , China , Monitoramento Ambiental , Florestas , Compostos Orgânicos , Solo/química
5.
Ecotoxicol Environ Saf ; 205: 111359, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961490

RESUMO

As one of the most commonly used and frequently detected herbicides in the coastal seawater, the ecotoxicity of atrazine to phytoplankton has been well demonstrated. However, little attention has been paid to the ecotoxicity of its two major hydrolysates (desisopropylatrazine (DIA) and desethylatrazine (DEA)), which are also widely distributed in natural seawater. Here we present a comprehensive analysis of the photosynthetic physiology and chromophoric dissolved organic matter (CDOM) characteristics of the diatom Phaeodactylum tricornutum Pt-1 (CCMP 2561) under atrazine, DIA and DEA stress, respectively. The results showed that both atrazine and the two derivatives had significant negative effects on the concentration of chlorophyll a, maximum quantum efficiency (Fv/Fm) and relative electron transport rates (rETR) of P. tricornutum Pt-1. Furthermore, the CDOM pattern released by P. tricornutum Pt-1 cells also changed significantly after 7-day exposure. Compared with the control group, the fluorescence intensity (3D-EEM spectra) of protein-like components was obviously lower, while that of the humic acid-like components was higher. The findings of this study indicate that the ecotoxicity of atrazine might have been underestimated in previous investigations: both atrazine and its two major derivatives are not only phototoxic to microalgae but also influence the carbon sequestration potential in the coastal seawater.


Assuntos
Atrazina/toxicidade , Sequestro de Carbono , Diatomáceas/fisiologia , Fotossíntese/efeitos dos fármacos , Clorofila A , Diatomáceas/efeitos dos fármacos , Transporte de Elétrons , Fluorescência , Herbicidas/toxicidade , Microalgas , Fitoplâncton/efeitos dos fármacos , Água do Mar
6.
Sci Total Environ ; 921: 171179, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402992

RESUMO

Mining activities aggravate the ecological degradation and emission of greenhouse gases throughout the world, thereby affecting the global climate and posing a serious threat to the ecological safety. Vegetation restoration is considered to be an effective and sustainable strategy to improve the post-mining soil quality and functions. However, we still have a limited knowledge of the impact of vegetation restoration on carbon sequestration potential in mining areas. In this pursuit, the present study was envisaged to integrate the findings from studies on soil organic carbon (SOC) sequestration in mining areas under vegetation restoration with field monitoring data. The carbon sequestration potential under vegetation restoration in China's mining areas was estimated by using a machine learning model. The results showed that (1) Vegetation restoration exhibited a consistently positive impact on the changes in the SOC reserves. The carbon sequestration potential was the highest in mixed forests, followed by broad-leaved forests, coniferous forests, grassland, shrubland, and farmland; (2) The number of years of vegetation restoration and mean annual precipitation were found to be the important moderating variables affecting the SOC reserves in reclaimed soils in mining areas; (3) There were significant differences in the SOC sequestration potential under different vegetation restoration scenarios in mining areas in China. The SOC sequestration potential reached up to 9.86 million t C a-1, when the soil was restored to the initial state. Based on the meta-analysis, the maximal attainable SOC sequestration potential was found to be 4.26 million t C a-1. The SOC sequestration potential reached the highest level of 12.86 million t C a-1, when the optimal vegetation type in a given climate was restored. The results indicated the importance of vegetation restoration for improving the soil sequestration potential in mining areas. The time lag in carbon sequestration potential for different vegetation types in mining areas was also revealed. Our findings can assist the development of ecological restoration regimens in mining areas to mitigate the global climate change.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38265583

RESUMO

Shaanxi Province is an important agricultural province in western China. Its profit-oriented management of crop residues remains a concern in the agriculture sector. Aiming to accelerate the valorization of agricultural straw and offer potential solutions for profit-oriented use of crop residues in Shaanxi, this study estimated the quantity of resources and collectable amount of crop straw by using the grain-to-straw ratio, analyzed the carbon emission reduction potential considering biochar energy and soil uses with the help of a life cycle assessment (LCA) model, and calculated the economic benefits of biochar production using waste and abandoned straw in Weinan (a city of Shaanxi). The theoretical resources and collectible amount of crop straw in Shaanxi showed an overall growth trend from 1949 to 2021, reaching 1.47 × 107 and 1.26 × 107 t in 2021 respectively. In 2021, straw from corn, wheat, and other grains accounted for 94.32% of the total straw. Among the 11 cities in Shaanxi, Weinan had the largest straw resources of 2.82 × 106 t, Yulin had the largest per capita straw resources of 0.72 t/person, and Yangling had the highest resource density of 7.60 t/hm2. The total carbon emission reduction was 3.11 × 104 t under scenario A with crop straw used for power generation. The emission reduction ranged from 1.25 × 107 to 1.27 × 107 CO2e t under scenario B with biochar production for energy and soil use. By using waste and abandoned straw in Weinan for biochar production, carbon emissions could be reduced by up to 2.07 × 105 t CO2e. In terms of the economic benefit from straw pyrolysis, the actual income was estimated to range from 0.67 × 108 to 1.33 × 108 ¥/a with different carbon prices. This study sheds light on the economic and environmental benefits of agricultural straw valorization through pyrolysis in Shaanxi, and provided an important basis for promoting the agricultural straw utilization in view of its potential for carbon emission reduction.

8.
Carbon Balance Manag ; 18(1): 17, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668811

RESUMO

BACKGROUND: Continuous increasing carbon dioxide (CO2) has aggravated global warming and promoted urban tree planting projects for many countries. So it's imperative to select high carbon sequestering landscape tree species while considering their aesthetic values of urban green space. RESULTS: 32 tree species were selected as test objects which were commonly used in landscaping in Zhengzhou, a typical northern city of China. To assess the comprehensive carbon sequestration potential of landscape tree species in different plant configuration types, we simultaneously considered their daily net carbon sequestration per unit leaf area (wCO2), daily net carbon sequestration per unit land area (WCO2) and daily net carbon sequestration of the whole plant (QCO2) through cluster analysis. Besides that, we found out the key factors affecting carbon sequestration potential of landscape tree species by redundancy analysis. CONCLUSION: Populus, P Stenoptera, P. acerifolia among large arbors (LA), V odoratissimum, P. Serratifolia, S. oblata among small arbors (SA), and B sinica var. Parvifolia, B. Megistophylla, L quihoui among shrubs (S) were recommended for local urban green space management. Photosynthetic rate (Pn), crown area (CA) and leaf area index (LAI) were the key factors which affected the comprehensive carbon sequestration potential both for LA, SA and S.

9.
Chemosphere ; 314: 137646, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581119

RESUMO

Considering the characteristics of municipal sewage sludge (MS) and Sedum alfreddi L. (SA, a hyperaccumulator plant), we attempted to use MS to enhance the enrichment and stability of heavy metals (HMs) in pyrolysis residue during SA pyrolysis. The effects of pyrolysis temperature (400-800 °C) and co-pyrolysis on migration behavior, chemical speciation, long-term leaching toxicity of HMs, and the environmental risk and carbon sequestration potential of biochar were systematically investigated. Besides, thermodynamic equilibrium simulations were performed to study the transformation of HM compounds during pyrolysis. When the pyrolysis temperature increased from 400 °C to 800 °C, the unstable fractions (F1+F2) of Cd, Pb, Cu, and Cr in MS1SA3 800 had decreased to less than 6% and Zn to 20.4%, and long-term leachability of HMs decreased continuously. Meanwhile, biochar's ecological risk was reduced to a low level, while its carbon sequestration potential improved with little released HMs. Compared with SA pyrolysis alone, adding MS increased the relative residue content of Cd and Zn in biochar, whereas no apparent effect on Pb, Cu, and Cr, and the proportion of stable fractions (F3+F4) increased. Co-pyrolysis enhanced the carbon sequestration potential of biochar, attributed to the inherent minerals of MS. Equilibrium calculations showed that the influence of MS on the fate of HMs during SA pyrolysis is mainly attributed to its high sulfur content, while Si and Al preferentially combine with alkali metal (K)/alkaline earth metal (Ca) and then interact with Zn. The findings in this paper suggest that co-pyrolysis of MS as an additive with hyperaccumulator plants is a feasible proposal, and the co-pyrolysis biochar obtained at suitable temperatures has the potential for safe application.


Assuntos
Metais Pesados , Esgotos , Esgotos/química , Pirólise , Biodegradação Ambiental , Sequestro de Carbono , Cádmio , Chumbo , Carvão Vegetal/química , Metais Pesados/análise
10.
Sci Total Environ ; 885: 163959, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146830

RESUMO

Subsurface drainage (SSD) has been proved to be an effective technology to reclaim waterlogged saline soils. Three SSD projects were implemented in Haryana, India in 2009, 2012 and 2016 to study the long term effect of SSD (10, 7 and 3 years) operation on restoring productivity and carbon sequestration potential of degraded waterlogged saline soils under prevalent rice-wheat cropping system. These studies indicated that successful operation of SSD improved soil quality parameters such as bulk density, BD (from 1.58 to 1.52 Mg m-3), saturated hydraulic conductivity, SHC (from 3.19 to 5.07 cm day-1); electrical conductivity, ECe (from 9.72 to 2.18 dS m-1), soil organic carbon, OC (from 0.22 to 0.34 %), dehydrogenase activity, DHA (from 15.44 to 31.65 µg g-1 24 h-1), and alkaline phosphatase, ALPA (from 16.66 to 40.11 µg P-NP g-1 h-1) in upper soil surface (0-30 cm). The improved soil quality resulted in increased rice-wheat system yield (rice equivalent yield) by 328 %, 465 % and 665 % at Kahni, Siwana Mal and Jagsi sites, respectively. Studies also revealed that carbon sequestration potential of degraded land increased with the implementation of SSD projects. The principal component analysis (PCA) showed that % OC, ECe, ALPA, available N and K content were the most contributing factor for soil quality index (SQI). The overall result of the studies showed that SSD technology holds great potential to improve soil quality, increase crop productivity, farmers' income and ensure land degradation neutrality and food security in waterlogged saline areas of western Indo Gangetic Plain of India. Hence, it can be concluded that large scale adoption of SSD may fulfill the promise "No poverty, Zero hunger, and Life on land" sustainable development goals of United Nation in degraded waterlogged saline areas.

11.
Environ Pollut ; 306: 119411, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525519

RESUMO

Phytoplankton contribute approximately 50% to the global photosynthetic carbon (C) fixation. However, our understanding of the corresponding C sequestration capacity and driving mechanisms associated with each individual phytoplankton taxonomic group is limited. Particularly in the hydrologically dynamic system with highly complex surface hydrological processes (floodplain lake systems). Through investigating seasonal monitoring data in a typical floodplain lake system and estimation of primary productivity of each phytoplankton taxonomic group individually using novel equations, this study proposed a phytoplankton C fixation model. Results showed that dominant phytoplankton communities had a higher gross carbon sequestration potential (CSP) (9.50 ± 5.06 Gg C each stage) and gross primary productivity (GPP) (65.46 ± 25.32 mg C m-2 d-1), but a lower net CSP (-1.04 ± 0.79 Gg C each stage) and net primary productivity (NPP) (-5.62 ± 4.93 mg C m-3 d-1) than rare phytoplankton communities in a floodplain lake system. Phytoplanktonic GPP was high (317.94 ± 73.28 mg C m-2 d-1) during the rainy season and low (63.02 ± 9.65 mg C m-2 d-1) during the dry season. However, their NPP reached the highest during the rising-water stage and the lowest during the receding-water stage. Findings also revealed that during the rainy season, high water levels (p = 0.56**) and temperatures (p = 0.37*) as well as strong solar radiation (p = 0.36*) will increase photosynthesis and accelerate metabolism and respiration of dominant phytoplankton communities, then affect primary productivity and CSP. Additionally, water level fluctuations drive changes in nutrients (p = -0.57*) and metals (p = -0.68*) concentrations, resulting in excessive nutrients and metals slowing down phytoplankton growth and reducing GPP. Compared with the static water lake system, the floodplain lake system with a lower net CSP became a heterotrophic C source.


Assuntos
Lagos , Fitoplâncton , Carbono , Sequestro de Carbono , Estações do Ano , Água
12.
Artigo em Inglês | MEDLINE | ID: mdl-35954542

RESUMO

Accurate prediction of forest carbon sequestration potential requires a comprehensive understanding of tree growth relationships. However, the studies for estimating carbon sequestration potential concerning tree growth relationships at fine spatial-scales have been limited. In this paper, we assessed the current carbon stock and predicted sequestration potential of Lushan City, where a region has rich vegetation types in southern China, by introducing parameters of diameter at breast height (DBH) and tree height in the method of coupling biomass expansion factor (BEF) and tree growth equation. The partial least squares regression (PLSR) was used to explore the role of combined condition factors (e.g., site, stand, climate) on carbon sequestration potential. The results showed that (1) in 2019, the total carbon stock of trees in Lushan City was 9.22 × 105 t, and the overall spatial distribution exhibited a decreasing tendency from northwest to south-central, and the carbon density increased with elevation; (2) By 2070, the carbon density of forest in Lushan City will reach a relatively stable state, and the carbon stock will continue to rise to 2.15 × 106 t, which is 2.33 times of the current level, indicating that Lushan forest will continue to serve as a carbon sink for the next fifty years; (3) Excluding the effect of tree growth, regional forest carbon sequestration potential was significantly influenced on site characteristics, which achieved the highest Variable Importance in Projection (VIP) value (2.19) for slope direction. Our study provided a better understanding of the relationships between forest growth and carbon sequestration potential at fine spatial-scales. The results regarding the condition factors and how their combination characteristics affect the potential for carbon sequestration could provide crucial insights for Chinese carbon policy and global carbon neutrality goals.


Assuntos
Sequestro de Carbono , Florestas , Biomassa , Carbono/análise , China , Árvores
13.
Environ Sci Pollut Res Int ; 27(5): 4814-4829, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845243

RESUMO

The phytoplankton (internal driving forces) and environmental variables that affect complex biochemical reactions (external driving forces) play an important role in regulating photosynthetic carbon fixation. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) exists in various phytoplankton species and is an important enzyme in the photosynthetic process. To investigate the phytoplankton composition (internal driving forces), we selected the functional gene of the Rubisco large subunit (rbcL) as the target gene for this study. Phytoplankton gross primary productivity was measured using light and dark biological oxygen demand bottles to assess the carbon sequestration potential. The fundamental environmental indicators were determined to analyze the mechanisms that drive the carbon fixation process. The correlation results indicated that green algae were only controlled by nitrate, and that diatoms were positively correlated with phosphate. The cluster analysis results demonstrated that nitrite was the major driver controlling phytoplankton primary productivity. During the wet seasons (spring and summer), the contribution of the planktonic community respiration to the carbon sequestration potential was higher than net primary productivity (NPP), followed by dissolved organic carbon and nitrate. During the dry season (autumn), NPP, total nitrogen, and nitrite ranked highest in terms of carbon sequestration potential. The contributions of green algae and diatoms to the carbon sequestration potential were temporally higher than those of cyanobacteria. The maximum carbon sequestration potential occurred during autumn because of diatom production and the function of phosphate, whereas the minimum carbon sequestration potential occurred in summer. Spatially, the upstream carbon sequestration potential was higher compared with downstream because of the effect (contribution) of cyanobacteria (Phormidium), diatoms (Surirella solea and Thalassiosira pseudonana), and environmental variable (nitrite). These findings provide a better understanding of the underlying mechanisms of phytoplankton productivity and the influences of environmental variables on carbon sequestration in urban river ecosystems.


Assuntos
Diatomáceas , Fitoplâncton , Sequestro de Carbono , Ecossistema , Fitoplâncton/química , Rios , Estações do Ano
14.
PeerJ ; 6: e4859, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844994

RESUMO

BACKGROUND: The spruce forests are dominant communities in northwest China, and play a key role in national carbon budgets. However, the patterns of carbon stock distribution and accumulation potential across stand ages are poorly documented. METHODS: We investigated the carbon stocks in biomass and soil in the natural spruce forests in the region by surveys on 39 plots. Biomass of tree components were estimated using allometric equations previously established based on tree height and diameter at breast height, while biomass in understory (shrub and herb) and forest floor were determined by total harvesting method. Fine root biomass was estimated by soil coring technique. Carbon stocks in various biomass components and soil (0-100 cm) were estimated by analyzing the carbon content of each component. RESULTS: The results showed that carbon stock in these forest ecosystems can be as high as 510.1 t ha-1, with an average of 449.4 t ha-1. Carbon stock ranged from 28.1 to 93.9 t ha-1 and from 0.6 to 8.7 t ha-1 with stand ages in trees and deadwoods, respectively. The proportion of shrubs, herbs, fine roots, litter and deadwoods ranged from 0.1% to 1% of the total ecosystem carbon, and was age-independent. Fine roots and deadwood which contribute to about 2% of the biomass carbon should be attached considerable weight in the investigation of natural forests. Soil carbon stock did not show a changing trend with stand age, ranging from 254.2 to 420.0 t ha-1 with an average of 358.7 t ha-1. The average value of carbon sequestration potential for these forests was estimated as 29.4 t ha-1, with the lower aged ones being the dominant contributor. The maximum carbon sequestration rate was 2.47 t ha-1 year-1 appearing in the growth stage of 37-56 years. CONCLUSION: The carbon stock in biomass was the major contributor to the increment of carbon stock in ecosystems. Stand age is not a good predictor of soil carbon stocks and accurate evaluation of the soil carbon dynamics thus requires long-term monitoring in situ. The results not only revealed carbon stock status and dynamics in these natural forests but were helpful to understand the role of Natural Forest Protection project in forest carbon sequestration as well.

15.
Ecol Evol ; 8(15): 7451-7461, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30151162

RESUMO

The Grain for Green Program (GGP) was the most all-embracing program of ecological reconstruction implemented in China. To estimate carbon storages and carbon sequestration potentials of the GGP forests, the study presented in the paper collected data spanning from 1999 to 2010, such as tree species, tree planting area relevant to the GGP, empirical growth curves suitable for different planted tree species in China, as well as wood density (WD), biomass expansion factor (BEF), carbon fraction (CF) of different trees species, and estimated the carbon storages of the biomasses of GGP forests from 1999 to 2050. It showed that the total carbon storage of the biomass of GGP forests was 320.29 Tg upon the GGP completion in 2010; the total carbon sequestration is higher during the early GGP-implementation stage than at the late GGP-implementation stage, and the annual mean carbon sequestration of GGP forests was 26.69 Tg/year. The potential of GGP forests as carbon sink presented an increasing increment. In China, the potential increments of GGP forests as carbon sinks were estimated to be 397.34, 604.00, 725.53, and 808.90 Tg in 2020, 2030, 2040, and 2050, respectively, and the carbon sequestration rates were 1.72, 0.89, 0.52, and 0.36 Mg ha-1 year-1, respectively, corresponding to 2010s, 2020s, 2030s, and 2040s. Therefore, the GGP forests had bigger carbon sequestration capacities and potentials in China.

16.
Sci Total Environ ; 630: 389-400, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29482147

RESUMO

Although soils have a high potential to offset CO2 emissions through its conversion into soil organic carbon (SOC) with long turnover time, it is widely accepted that there is an upper limit of soil stable C storage, which is referred to SOC saturation. In this study we estimate SOC saturation in French topsoil (0-30cm) and subsoil (30-50cm), using the Hassink equation and calculate the additional SOC sequestration potential (SOCsp) by the difference between SOC saturation and fine fraction C on an unbiased sampling set of sites covering whole mainland France. We then map with fine resolution the geographical distribution of SOCsp over the French territory using a regression Kriging approach with environmental covariates. Results show that the controlling factors of SOCsp differ from topsoil and subsoil. The main controlling factor of SOCsp in topsoils is land use. Nearly half of forest topsoils are over-saturated with a SOCsp close to 0 (mean and standard error at 0.19±0.12) whereas cropland, vineyard and orchard soils are largely unsaturated with degrees of C saturation deficit at 36.45±0.68% and 57.10±1.64%, respectively. The determinant of C sequestration potential in subsoils is related to parent material. There is a large additional SOCsp in subsoil for all land uses with degrees of C saturation deficit between 48.52±4.83% and 68.68±0.42%. Overall the SOCsp for French soils appears to be very large (1008Mt C for topsoil and 1360Mt C for subsoil) when compared to previous total SOC stocks estimates of about 3.5Gt in French topsoil. Our results also show that overall, 176Mt C exceed C saturation in French topsoil and might thus be very sensitive to land use change.

17.
Ying Yong Sheng Tai Xue Bao ; 28(4): 1112-1120, 2017 Apr 18.
Artigo em Zh | MEDLINE | ID: mdl-29741306

RESUMO

Based on the data of the field investigation and laboratory and the database of the 8th national forestry inventory, ecosystem carbon density, storage amount, and sequestration potential of tree layer were estimated for five typical plantation ecosystems (Robinia pseudoacacia, Populus spp., Pinus tabuliformis Pinus armandii, which were grouped as one kind of ecosystems, Larix principis-rupprechtii, and Picea asperata) in Gansu Province. The results showed that the average carbon density and total carbon storage of the five typical plantation ecosystems were 139.65 t·hm-2 and 85.78 Tg, respectively. Ecosystem carbon density varied among ecosystems. It followed the sequence of premature (250.70 t·hm-2) > mature (175.97 t·hm-2) > middle-aged (156.92 t·hm-2) > young (117.56 t·hm-2) forest. Meanwhile, carbon storage in these plantations ranked in the order of young (45.47 Tg) > middle-aged (19.54 Tg) > mature (11.84 Tg) > pre-mature (8.93 Tg) forest. Specifically, young and middle-aged plantations contributed the most and accounted for 75.9% of the total carbon storage. The realistic carbon sequestration potential (CPr) by tree layer of the five typical plantation ecosystems in Gansu Province was estimated as 7.27 Tg. The two largest contributors toCPr were R. pseudoacacia (2.49 Tg) and Populus spp. (2.10 Tg). Young plantations (3.78 Tg) showed the largest CPr, followed by middle-aged plantations (2.04 Tg), and the value of premature plantations (0.45 Tg) was the smallest. The maximum carbon sequestration potential (CPmax) might be up to 27.55 Tg, the CPmax with different plantations ranked in the order of R. pseudoacacia (9.42 Tg)> L. principis-rupprechtii (6.22 Tg) ≈ P. asperata (6.36 Tg) > Populus spp. (3.18 Tg) >P. tabuliformis P. armandii (2.37 Tg). The CPmax of young and middle-aged plantations was estimated as 18.48 and 6.89 Tg, respectively, which accounted for 92% of the total maximum carbon sequestration potential.


Assuntos
Sequestro de Carbono , Carbono , Solo , China , Ecossistema , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA