Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Mol Cell Cardiol ; 140: 42-55, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32105665

RESUMO

The Drosophila heart provides a simple model to examine the remodelling of muscle insertions with growth, extracellular matrix (ECM) turnover, and fibrosis. Between hatching and pupation, the Drosophila heart increases in length five-fold. If major cardiac ECM components are secreted remotely, how is ECM "self assembly" regulated? We explored whether ECM proteases were required to maintain the morphology of a growing heart while the cardiac ECM expanded. An increase in expression of Drosophila's single tissue inhibitor of metalloproteinase (TIMP), or reduced function of metalloproteinase MMP2, resulted in fibrosis and ectopic deposition of two ECM Collagens; type-IV and fibrillar Pericardin. Significant accumulations of Collagen-IV (Viking) developed on the pericardium and in the lumen of the heart. Congenital defects in Pericardin deposition misdirected further assembly in the larva. Reduced metalloproteinase activity during growth also increased Pericardin fibre accumulation in ECM suspending the heart. Although MMP2 expression was required to remodel and position cardiomyocyte cell junctions, reduced MMP function did not impair expansion of the heart. A previous study revealed that MMP2 negatively regulates the size of the luminal cell surface in the embryonic heart. Cardiomyocytes align at the midline, but do not adhere to enclose a heart lumen in MMP2 mutant embryos. Nevertheless, these embryos hatch and produce viable larvae with bifurcated hearts, indicating a secondary pathway to lumen formation between ipsilateral cardiomyocytes. MMP-mediated remodelling of the ECM is required for organogenesis, and to prevent assembly of excess or ectopic ECM protein during growth. MMPs are not essential for normal growth of the Drosophila heart.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Coração/crescimento & desenvolvimento , Larva/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Miocárdio/metabolismo , Animais , Animais Geneticamente Modificados , Colágeno Tipo IV/metabolismo , Proteínas de Drosophila/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Organogênese/genética , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo
2.
Dev Biol ; 384(2): 166-80, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24140541

RESUMO

Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer's vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left-right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads to coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left-right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects.


Assuntos
Padronização Corporal/fisiologia , Coração/embriologia , Proteínas de Choque Térmico Pequenas/fisiologia , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Primers do DNA , Proteínas de Choque Térmico Pequenas/genética , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase
3.
Biochem Mol Biol Educ ; 49(5): 782-788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156745

RESUMO

A high variety of experimental model organisms have been used in developmental biology practical lectures. The work with developing embryos is crucial to make students aware of the multiple biological phenomena underlying normal animal embryogenesis and morphogenesis and represent a unique experimental platform to analyze the impact of molecular signaling in the regulation of all these processes. In particular, Biochemistry undergraduate students enjoy both practical and theoretical lectures on the molecular mechanisms of embryonic development, as that allows them for the integration of crucial molecular concepts (e.g. signaling and signal transduction mechanisms; molecular patterning of development) into the dynamic and progressive context of animal embryonic ontogenesis. Accordingly, it is important to carefully design practical laboratory lectures in developmental biology, as these are a unique pedagogical tools fostering the interests of the students in this subject. This study describes the design, implementation, and evaluation of a two-session laboratory practical activity performed by Biochemistry undergraduate students at University of Málaga (Spain). In this practical activity, which takes advantage of the unique characteristics of the chick embryo, students learn how the vertebrate heart forms from the fusion of two bilateral-symmetric cardiac progenitor pools under the guidance of the underlying endoderm. This cheap and easy practical laboratory activity provides relevant visual information on how experimental manipulations can severely influence anatomical form during organ development, as well as an excellent experimental setting to test molecular regulation of morphogenesis in an ex vivo (ex ovo) context.


Assuntos
Bioquímica , Cárdia , Animais , Embrião de Galinha , Biologia do Desenvolvimento , Feminino , Humanos , Aprendizagem , Gravidez , Estudantes
4.
Elife ; 62017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098558

RESUMO

Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis.


Assuntos
Movimento Celular , Coração/embriologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Animais , Técnicas de Inativação de Genes , Camundongos , Morfogênese , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Imagem com Lapso de Tempo , Peixe-Zebra
5.
Cell Cycle ; 14(20): 3306-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317250

RESUMO

Excess alcohol consumption during pregnancy has been acknowledged to increase the incidence of congenital disorders, especially the cardiovascular system. However, the mechanism involved in ethanol-induced cardiac malformation in prenatal fetus is still unknown. We demonstrated that ethanol exposure during gastrulation in the chick embryo increased the incidence of cardia bifida. Previously, we reported that autophagy was involved in heart tube formation. In this context, we demonstrated that ethanol exposure increased ATG7 and LC3 expression. mTOR was found to be inhibited by ethanol exposure. We activated autophagy using exogenous rapamycin (RAPA) and observed that it induced cardiac bifida and increased GATA5 expression. RAPA beads implantation experiments revealed that RAPA restricted ventricular myosin heavy chain (VMHC) expression. In vitro explant cultures of anterior primitive streak demonstrated that both ethanol and RAPA treatments could reduce cell differentiation and the spontaneous beating of cardiac precursor cells. In addition, the bead experiments showed that RAPA inhibited GATA5 expression during heart tube formation. Semiquantitative RT-PCR analysis indicated that BMP2 expression was increased while GATA4 expression was suppressed. In the embryos exposed to excess ethanol, BMP2, GATA4 and FGF8 expression was repressed. These genes are associated with cardiomyocyte differentiation, while heart tube fusion is associated with increased Wnt3a but reduced VEGF and Slit2 expression. Furthermore, the ethanol exposure also caused the production of excess ROS, which might damage the cardiac precursor cells of developing embryos. In sum, our results revealed that disrupting autophagy and excess ROS generation are responsible for inducing abnormal cardiogenesis in ethanol-treated chick embryos.


Assuntos
Autofagia/efeitos dos fármacos , Etanol/toxicidade , Cardiopatias Congênitas/induzido quimicamente , Coração/efeitos dos fármacos , Coração/embriologia , Organogênese/efeitos dos fármacos , Animais , Autofagia/fisiologia , Embrião de Galinha , Feminino , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Organogênese/fisiologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo
6.
J Biochem ; 155(4): 235-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24451492

RESUMO

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are second-generation lysophospholipid mediators that exert multiple biological functions through their own cognate receptors. They are both present in the blood stream, activate receptors with similar structures (endothelial differentiation gene receptors), have similar roles in the vasculature and are vasoactive. However, it is unclear whether these lysophospholipid mediators cross-talk downstream of each receptor. Here, we provide in vivo evidence that LPA signaling counteracted S1P signaling. When autotaxin (Atx), an LPA-producing enzyme, was overexpressed in zebrafish embryos by injecting atx mRNA, the embryos showed cardia bifida, a phenotype induced by down-regulation of S1P signaling. A similar cardiac phenotype was not induced when catalytically inactive Atx was introduced. The cardiac phenotype was synergistically enhanced when antisense morpholino oligonucleotides (MO) against S1P receptor (s1pr2/mil) or S1P transporter (spns2) was introduced together with atx mRNA. The Atx-induced cardia bifida was prominently suppressed when embryos were treated with an lpar1 receptor antagonist, Ki16425, or with MO against lpar1. These results provide the first in vivo evidence of cross-talk between LPA and S1P signaling.


Assuntos
Embrião não Mamífero/anormalidades , Embrião não Mamífero/enzimologia , Cardiopatias Congênitas/embriologia , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Esfingosina/análogos & derivados , Peixe-Zebra/embriologia , Animais , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Células HEK293 , Cardiopatias Congênitas/enzimologia , Cardiopatias Congênitas/patologia , Humanos , Isoxazóis/farmacologia , Fenótipo , Diester Fosfórico Hidrolases/genética , Propionatos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA