Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2220570120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364097

RESUMO

Understanding the origins of variation in agricultural pathogens is of fundamental interest and practical importance, especially for diseases that threaten food security. Fusarium oxysporum is among the most important of soil-borne pathogens, with a global distribution and an extensive host range. The pathogen is considered to be asexual, with horizontal transfer of chromosomes providing an analog of assortment by meiotic recombination. Here, we challenge those assumptions based on the results of population genomic analyses, describing the pathogen's diversity and inferring its origins and functional consequences in the context of a single, long-standing agricultural system. We identify simultaneously low nucleotide distance among strains, and unexpectedly high levels of genetic and genomic variability. We determine that these features arise from a combination of genome-scale recombination, best explained by widespread sexual reproduction, and presence-absence variation consistent with chromosomal rearrangement. Pangenome analyses document an accessory genome more than twice the size of the core genome, with contrasting evolutionary dynamics. The core genome is stable, with low diversity and high genetic differentiation across geographic space, while the accessory genome is paradoxically more diverse and unstable but with lower genetic differentiation and hallmarks of contemporary gene flow at local scales. We suggest a model in which episodic sexual reproduction generates haplotypes that are selected and then maintained through clone-like dynamics, followed by contemporary genomic rearrangements that reassort the accessory genome among sympatric strains. Taken together, these processes contribute unique genome content, including reassortment of virulence determinants that may explain observed variation in pathogenic potential.


Assuntos
Fusarium , Fusarium/genética , Especificidade de Hospedeiro , Genômica , Agricultura , Doenças das Plantas/genética
2.
Plant J ; 117(1): 53-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738381

RESUMO

Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.


Assuntos
Cicer , Cicer/metabolismo , Locos de Características Quantitativas/genética , Alelos , Domesticação , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Sementes/genética
3.
Plant J ; 116(4): 1152-1171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37285370

RESUMO

Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.


Assuntos
Cicer , Lens (Planta) , Lupinus , Phaseolus , Humanos , Lipidômica , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Alérgenos
4.
Plant Mol Biol ; 114(2): 19, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363401

RESUMO

Chickpea (Cicer arietinum) is a cool season grain legume experiencing severe yield loss during heat stress due to the intensifying climate changes and its associated gradual increase of mean temperature. Hence, understanding the genetic architecture regulating heat stress tolerance has emerged as an important trait to be addressed for enhancing yield and productivity of chickpea under heat stress. The present study is intended to identify the major genomic region(s) governing heat stress tolerance in chickpea. For this, an integrated genomics-assisted breeding strategy involving NGS-based high-resolution QTL-seq assay, QTL region-specific association analysis and molecular haplotyping was deployed in a population of 206 mapping individuals and a diversity panel of 217 germplasm accessions of chickpea. This combinatorial strategy delineated a major 156.8 kb QTL genomic region, which was subsequently narrowed-down to a functional candidate gene CaHSFA5 and its natural alleles associated strongly with heat stress tolerance in chickpea. Superior natural alleles and haplotypes delineated from the CaHSFA5 gene have functional significance in regulating heat stress tolerance in chickpea. Histochemical staining, interaction studies along with differential expression profiling of CaHSFA5 and ROS scavenging genes suggest a cross talk between CaHSFA5 with ROS homeostasis pertaining to heat stress tolerance in chickpea. Heterologous gene expression followed by heat stress screening further validated the functional significance of CaHSFA5 for heat stress tolerance. The salient outcomes obtained here can have potential to accelerate multiple translational genomic analysis including marker-assisted breeding and gene editing in order to develop high-yielding heat stress tolerant chickpea varieties.


Assuntos
Cicer , Termotolerância , Humanos , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Cicer/genética , Genoma de Planta , Espécies Reativas de Oxigênio , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Termotolerância/genética
5.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159511

RESUMO

According to archaeological records, chickpea (Cicer arietinum) was first domesticated in the Fertile Crescent about 10,000 years BP. Its subsequent diversification in Middle East, South Asia, Ethiopia, and the Western Mediterranean, however, remains obscure and cannot be resolved using only archeological and historical evidence. Moreover, chickpea has two market types: "desi" and "kabuli," for which the geographic origin is a matter of debate. To decipher chickpea history, we took the genetic data from 421 chickpea landraces unaffected by the green revolution and tested complex historical hypotheses of chickpea migration and admixture on two hierarchical spatial levels: within and between major regions of cultivation. For chickpea migration within regions, we developed popdisp, a Bayesian model of population dispersal from a regional representative center toward the sampling sites that considers geographical proximities between sites. This method confirmed that chickpea spreads within each geographical region along optimal geographical routes rather than by simple diffusion and estimated representative allele frequencies for each region. For chickpea migration between regions, we developed another model, migadmi, that takes allele frequencies of populations and evaluates multiple and nested admixture events. Applying this model to desi populations, we found both Indian and Middle Eastern traces in Ethiopian chickpea, suggesting the presence of a seaway from South Asia to Ethiopia. As for the origin of kabuli chickpeas, we found significant evidence for its origin from Turkey rather than Central Asia.


Assuntos
Cicer , Cicer/genética , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Frequência do Gene , Genômica
6.
Funct Integr Genomics ; 24(2): 41, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386088

RESUMO

Plant diseases pose a severe threat to the food security of the global human population. One such disease is Fusarium wilt, which affects many plant species and causes up to 100% yield losses. Fusarium pathogen has high variability in its genetic constitution; therefore, it has evolved into different physiological races to infect different plant species spread across the different geographical regions of the world. The pathogen mainly affects plant roots, leading to colonizing and blocking vascular bundle cells, specifically xylem vessels. This blocking results in chlorosis, vascular discoloration, leaf wilting, shortening of plant, and, in severe cases, premature plant death. Due to the soil-borne nature of the wilt pathogen, neither agronomic nor plant protection measures effectively reduce the incidence of the disease. Therefore, the most cost-effective management strategy for Fusarium wilt is developing varieties resistant to a particular race of the fungus wilt prevalent in a given region. This strategy requires understanding the pathogen, its disease cycle, and epidemiology with climate-changing scenarios. Hence, in the review, we will discuss the pathogenic aspect and genetics of the Fusarium wilt, including molecular interventions for developing climate-smart wilt tolerant/resistant varieties of crops. Overall, this review will add to our knowledge for advancing the breeding of resistance against the wilt pandemic.


Assuntos
Fusarium , Pandemias , Humanos , Melhoramento Vegetal , Agricultura , Mudança Climática
7.
BMC Plant Biol ; 24(1): 671, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004702

RESUMO

BACKGROUND: Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS: The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS: Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.


Assuntos
Brassinosteroides , Cicer , Desidratação , Melatonina , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Cicer/efeitos dos fármacos , Cicer/fisiologia , Cicer/genética , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Melatonina/farmacologia , Esteroides Heterocíclicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sinergismo Farmacológico , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
8.
BMC Plant Biol ; 24(1): 750, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103803

RESUMO

BACKGROUND: Chickpea is a key pulse crop grown in the spring in dryland regions. The cold resistance potential of chickpeas allows for the development of genotypes with varying sowing dates to take advantage of autumn and winter rainfall, particularly in dryland regions. In this study, we assessed grain yield, plant height, 100-seed weight, days to maturity, and days to flowering of 17 chickpea genotypes in five autumn-sown dryland regions from 2019 to 2021. Additionally, the response of selected chickpea genotypes to cold stress was examined at temperatures of -4 °C, 4 °C, and 22 °C by analyzing biochemical enzymes. RESULTS: Mixed linear model of ANOVA revealed a significant genotype × environment interaction for all traits measured, indicating varying reactions of genotypes across test environments. This study reported low estimates of broad-sense heritability for days to flowering (0.34), days to maturity (0.13), and grain yield (0.08). Plant height and seed weight exhibited the highest heritability, with genotypic selection accuracies of 0.73 and 0.92, respectively. Moreover, partial least square regression highlighted the impactful role of rainfall during all months except of October, November, and February on grain yield and its interaction with environments in autumn-planted chickpeas. Among the genotypes studied, G9, G10, and G17 emerged as superior based on stability parameters and grain yield. In particular, genotype G9 stood out as a promising genotype for dryland regions, considering both MTSI and genotype by yield*trait aproaches. The cold assay indicated that - 4 °C is crucial for distinguishing between susceptible and resistant genotypes. The results showed the important role of the enzymes CAT and GPX in contributing to the cold tolerance of genotype G9 in autumn-sown chickpeas. CONCLUSIONS: Significant G×E for agro-morphological traits of chickpea shows prerequisite for multi-trial analysis. Chickpea`s direct root system cause that monthly rainfall during plant establishment has no critical role in its yield interaction with dryland environment. Considering the importance of agro-morphological traits and their direct and indirect effects on grain yield, the utilization of multiple-trait stability approches is propose. Evaluation of chickpea germplasm reaction against cold stress is necessary for autumn-sowing. Finally, autumn sowing of genotype FLIP 10-128 C in dryland conditions can led to significant crop performance.


Assuntos
Cicer , Genótipo , Estações do Ano , Cicer/genética , Cicer/crescimento & desenvolvimento , Cicer/enzimologia , Cicer/fisiologia
9.
Planta ; 260(2): 38, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951258

RESUMO

MAIN CONCLUSION: Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.


Assuntos
Antocianinas , Cicer , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proantocianidinas , Sementes , Fatores de Transcrição , Cicer/genética , Cicer/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biossíntese , Proantocianidinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento
10.
New Phytol ; 242(6): 2652-2668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649769

RESUMO

Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.


Assuntos
Cicer , Regulação da Expressão Gênica de Plantas , MicroRNAs , Proteínas de Armazenamento de Sementes , Fatores de Transcrição , Sequência de Bases , Cicer/genética , Cicer/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/metabolismo , Sementes/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/genética
11.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203819

RESUMO

The availability of wild chickpea (Cicer reticulatum L.) accessions has the potential to be used for the improvement of important traits in cultivated chickpeas. The main objectives of this study were to evaluate the phenotypic and genetic variations of chickpea progeny derived from interspecific crosses between C. arietinum and C. reticulatum, and to establish the association between single nucleotide polymorphism (SNP) markers and a series of important agronomic traits in chickpea. A total of 486 lines derived from interspecific crosses between C. arietinum (CDC Leader) and 20 accessions of C. reticulatum were evaluated at different locations in Saskatchewan, Canada in 2017 and 2018. Significant variations were observed for seed weight per plant, number of seeds per plant, thousand seed weight, and plant biomass. Path coefficient analysis showed significant positive direct effects of the number of seeds per plant, thousand seed weight, and biomass on the total seed weight. Cluster analysis based on the agronomic traits generated six groups that allowed the identification of potential heterotic groups within the interspecific lines for yield improvement and resistance to ascochyta blight disease. Genotyping of the 381 interspecific lines using a modified genotyping by sequencing (tGBS) generated a total of 14,591 SNPs. Neighbour-joining cluster analysis using the SNP data grouped the lines into 20 clusters. The genome wide association analysis identified 51 SNPs that had significant associations with different traits. Several candidate genes associated with early flowering and yield components were identified. The candidate genes and the significant SNP markers associated with different traits have a potential to aid the trait introgression in the breeding program.


Assuntos
Cicer , Cicer/genética , Estudo de Associação Genômica Ampla , Alelos , Melhoramento Vegetal , Sementes
12.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279360

RESUMO

The molecular mechanism involved in chickpea (Cicer arietinum L.) resistance to the necrotrophic fungal pathogen Ascochyta rabiei is not well documented. A. rabiei infection can cause severe damage in chickpea, resulting in significant economic losses. Understanding the resistance mechanism against ascochyta blight can help to define strategies to develop resistant cultivars. In this study, differentially expressed genes from two partially resistant cultivars (CDC Corinne and CDC Luna) and a susceptible cultivar (ICCV 96029) to ascochyta blight were identified in the early stages (24, 48 and 72 h) of A. rabiei infection using RNA-seq. Altogether, 3073 genes were differentially expressed in response to A. rabiei infection across different time points and cultivars. A larger number of differentially expressed genes (DEGs) were found in CDC Corinne and CDC Luna than in ICCV 96029. Various transcription factors including ERF, WRKY, bHLH and MYB were differentially expressed in response to A. rabiei infection. Genes involved in pathogen detection and immune signalings such as receptor-like kinases (RLKs), Leucine-Rich Repeat (LRR)-RLKs, and genes associated with the post-infection defence response were differentially expressed among the cultivars. GO functional enrichment and pathway analysis of the DEGs suggested that the biological processes such as metabolic process, response to stimulus and catalytic activity were overrepresented in both resistant and susceptible chickpea cultivars. The expression patterns of eight randomly selected genes revealed by RNA-seq were confirmed by quantitative PCR (qPCR) analysis. The results provide insights into the complex molecular mechanism of the chickpea defence in response to the A. rabiei infection.


Assuntos
Ascomicetos , Cicer , Cicer/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ascomicetos/fisiologia
13.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474555

RESUMO

BACKGROUND: Prostate cancer (PC) and benign prostatic hyperplasia (BPH) are common health problems in the aging male population. Due to the unexplored and unconfirmed impact of food containing isoflavones, like sprouts, on the development of the management of BPH and prostate cancer, we decided to extend the knowledge in this area. RESULTS: We have demonstrated for the first time that chickpea sprouts may play an important role in the chemoprevention of prostate disorders. However, attention should be paid to the isoflavone content in the sprouts, as in our study, chickpea sprouts with a moderate concentration of the compounds, harvested in natural light conditions (CA10L) and blue LED light (CA7B), showed the best scores in terms of their potential towards prostate disorders. METHODS: Chickpea seeds were grown in LED chambers. The methanol extracts from sprouts were quantitatively defined using the HPLC system. Experiments such as the determination of PSA, 5-α-reductase, and dihydrotestosterone were performed on PNT2 and LNCaP cells. For anti-inflammatory assays (determination of NO, IL-6, and TNF-alpha release), murine RAW264.7 macrophages were used. CONCLUSIONS: The role of legume products as a diet element should be deeply evaluated for the development of future dietary recommendations for prostate cancer and BPH prevention.


Assuntos
Cicer , Isoflavonas , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Cicer/química , Próstata , Isoflavonas/química , Dieta
14.
J Sci Food Agric ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958470

RESUMO

BACKGROUND: The Cosmos sulphureus Cav. plant is studied for its high polyphenolic content with antioxidant properties. Its flowers, rich in phenolic acids, flavonoids, and tannins, hold promise as antioxidants in food preservation. The inclusion of these compounds in chickpea-based coatings with a previously studied preservative effect would be an excellent option as a food preservation method and microencapsulation addresses challenges like dispersion and degradation of polyphenols in the coating. The objective of this research was to evaluate the in vitro antioxidant activity of Cosmos sulphureus leaves, seed, and flower extracts and explore the protective effects of chickpea-based coatings containing microcapsules of flower polyphenolic extract on the chemical quality of stored roasted sunflower seeds during storage. RESULTS: The ethanolic leaf extract exhibited the highest antiradical activity, followed by the aqueous flower extract. After a storage period of 15 days, at 40 °C, the chickpea-based coatings effectively delayed lipid oxidation in the roasted sunflowers seeds, and the inclusion of polyphenolic microcapsules with 0.01% extract (SMC 0.01%) in the coating significantly improved the protective effect. By day 15 of storage, SMC 0.01% showed comparable peroxide value, conjugated dienes, and linoleic acid content to samples containing the synthetic antioxidant BHT (butylated hydroxytoluene). Samples that only contained chickpea-based coating and coating with polyphenolic microcapsules with 0.005% extract exhibited significantly greater reduction in fatty acid content compared to the 0.01% SMC treatment. CONCLUSION: The chickpea-based coating with polyphenolic microcapsules demonstrated antioxidant activity akin to synthetic BHT, offering a promising biopackaging solution for lipid-rich foods like roasted sunflower seeds. © 2024 Society of Chemical Industry.

15.
J Sci Food Agric ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011982

RESUMO

BACKGROUND: Future applications of high-internal-phase emulsions (HIPEs) are highly regarded, but poor freeze-thaw stability limits their utilization in frozen products. This study aimed to characterize the structure of chickpea protein microgel particles (HCPI) induced by NaCl and to assess its impact on the freeze-thaw stability of HIPEs. RESULTS: The results showed that NaCl induction (0-400 mmol L-1) increased the surface hydrophobicity (175.9-278.9) and interfacial adsorbed protein content (84.9%-91.3%) of HCPI. HIPEs prepared with HCPI induced by high concentration of NaCl exhibited superior flocculation index and centrifugal stability, and their freeze-thaw stability was better than that of natural chickpea protein. The increase in NaCl concentration reduced the droplet aggregation and coalescence index of the freeze-thaw emulsions, diminishing the precipitation of oil from the emulsion. Linear and nonlinear rheology showed that the strengthened gel structure (higher G' values) restricted water flow and counteracted the damage to the interfacial film by ice crystals at 100-400 mmol L-1 NaCl, thus improving the viscoelasticity of the freeze-thaw emulsions. Finally, the thawing loss of surimi gel with HCPI-200 HIPE was reduced by 2.04% compared to directly adding oil. CONCLUSION: This study provided a promising strategy to improve the freeze-thaw stability of HIPEs and reduce the thawing loss of frozen products. © 2024 Society of Chemical Industry.

16.
J Sci Food Agric ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619292

RESUMO

Chickpea is a field crop that is playing an emerging role in the provision of healthy and sustainable plant-based value-added ingredients for the food and nutraceutical industries. This article reviews the characteristics of chickpea (composition, health properties, and techno-functionality) and chickpea grain that influence their use as whole foods or ingredients in formulated food. It covers the exploitation of traditional and emerging processes for the conversion of chickpea into value-added differentiated food ingredients. The influence of processing on the composition, health-promoting properties, and techno-functionality of chickpea is discussed. Opportunities to tailor chickpea ingredients to facilitate their incorporation in traditional food applications and in the expanding plant-based meat alternative and dairy alternative markets are highlighted. The review includes an assessment of the possible uses of by-products of chickpea processing. Recommendations are provided for future research to build a sustainable industry using chickpea as a value-added ingredient. © 2024 Society of Chemical Industry.

17.
J Nematol ; 56(1): 20240023, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38975564

RESUMO

Recombinase polymerase amplification (RPA) is an isothermal in vitro nucleic acid amplification technique that has been adopted for simple, robust, rapid, reliable diagnostics of nematodes. In this study, the real-time RPA assay and RPA assay combined with lateral flow dipsticks (LF-RPA) have been developed targeting the ITS rRNA gene of the British root-knot nematode, Meloidogyne artiellia. The assay provided specific and rapid detection of this root-knot nematode species from crude nematode extracts without a DNA extraction step with a sensitivity of 0.125 second-stage juvenile (J2) specimen per a reaction tube for real-time RPA during 11 min and a sensitivity of 0.5 J2 specimens per a reaction tube for LF-RPA during 25 min. The RPA assays were validated with a wide range of non-target root-knot nematodes. The LF-RPA assay has great potential for nematode diagnostics in the laboratory having minimal available equipment.

18.
Plant Foods Hum Nutr ; 79(2): 539-544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696133

RESUMO

Chickpeas have large variations in their types and nutrient composition, owing to diverse environmental conditions, breeding techniques, and cultivars. Thirty-one improved varieties of chickpeas bred for various agronomic traits like high yield, resistance to diseases, and tolerance to abiotic stress were analyzed for their nutrient composition, along with two local varieties. They were found to be rich in proteins (16.09-26.22 g/100 g) and dietary fiber (10.33-26.33 g/100 g) with moderate amounts of available carbohydrates (34.20-54.72 g/100 g) and to have a significant quantity of minerals like calcium (127.50-183.86 mg/100 g), iron (4.55-8.33 mg/100 g), and phosphorous (285.92-528.31 mg/100 g). They were found to be similar (fat, carbohydrates, dietary fiber) or statistically higher (protein, ash) than the local varieties for all the nutrient parameters that were analyzed. A significant difference was also found between the desi and kabuli varieties, where the desi variety was found to have significantly lower fat and available carbohydrates but high dietary fiber content. This study signifies that the varietal differences in nutritional composition are significant in chickpeas. Varieties like Sasho, ICCV 96030, and Teketay showed desirable nutritional qualities associated with moisture, protein, dietary fiber, and minerals like zinc, phosphorous, iron, copper, and calcium. This data will be beneficial for manufacturers in the product development and value addition industries for the selection of varieties ideal for their needs since the nutrient component also confers several functional and physiochemical properties to the chickpea seed besides providing a nutritionally diverse diet.


Assuntos
Cicer , Fibras na Dieta , Minerais , Valor Nutritivo , Cicer/química , Fibras na Dieta/análise , Minerais/análise , Carboidratos da Dieta/análise , Proteínas Alimentares/análise , Gorduras na Dieta/análise
19.
Saudi Pharm J ; 32(1): 101916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178850

RESUMO

Glycation is the non-enzymatic adduct formation between reducing sugars or dicarbonyls with proteins and is a crucial molecular event under hyperglycaemic conditions of diabetes. The accumulation of advanced glycation end products (AGEs) due to glycation of proteins has been implicated in several diseases associated with ageing and diabetes. Thus, investigating the antiglycation potential of some trace metal ions (Manganese; Mn2+, and Zinc; Zn2+) and polyphenolic extract of chickpea seeds (PEC) on the methylglyoxal (MGO) induced glycation of a phytocystatin isolated from chickpea was taken up to find an inexpensive and non-toxic therapeutic means of medicating protein glycation and associated diabetic complications. The current study focused on the comparative analyses of these micronutrients and herbal extracts in inhibiting protein glycation and AGEs formation in a quest to develop nutraceuticals for managing diabetes. The effect of metals (Mn2+, Zn2+) and PEC on protein glycation was assessed by different techniques, i.e., glycation-specific AGE fluorescence and absorbance, thiol protease inhibitory activity assay, and conformational alterations by spectroscopic assays. This study revealed the significant anti-glycation potencies of Mn2+, Zn2+, and PEC against the MGO-induced glycation of CPC, which might pave the way for resolving pathological complications of diabetes by combining higher levels of efficacy, selectivity, and safety in humans. Moreover, characterization and identification of different AGEs formed during the glycation process in diabetics was done to apply the same for determining the onset of glycation at the early stage so that appropriate steps be taken to address the menace of diabetic complications.

20.
J Food Sci Technol ; 61(8): 1439-1456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966796

RESUMO

Aquafaba is the residual water from cooking chickpea in water. It has a high gelling ability, allowing it to create stable gels. However, those functional properties depend on the legume composition, genotype, cooking time, pressure, and temperature. This study aimed to evaluate the different processes for obtaining aquafaba and compare their nutritional composition and technological characteristics using a systematic review. The authors performed the systematic review by performing specific search strategies for Scopus, Web of Science, Pubmed, Lilacs, Google Scholar, and ProQuest. A total of 17 studies were analyzed. Of them, 17.64% (n = 3) used the wastewater from canned chickpeas, 17.64% (n = 3) compared the wastewater of canned chickpeas and dry grains, and 58.82% (n = 10) used dry chickpeas. Studies used different methods to analyze the protein content. The most used (n = 5) was the Association of Official Analytical Chemists (AOAC). The aquafaba presented carbohydrates at 2.03-2.59 g/100ml; protein at 0.0.8-2.8 g/100ml; and fat at 0.07-0.1 g/100ml. In general, preparing aquafaba followed: soaking (8-10 h at 4 °C-1 chickpea: 4 water), pressure cooking (30 min-2 chickpea: 3 water), and refrigerating (24h/4 °C). In general, the results showed the following steps to prepare aquafaba: soaking for 8-10 h at 4 °C at the proportion of 1:4 (chickpea:water), pressure cooking for 30 min in the proportion of 2:3 (chickpea: water), and refrigerating 24 h/4 °C. These procedures in a homemade aquafaba presented the best results, considering foam development and higher stability. The aquafaba from canned chickpeas has a higher foam-ability and lower emulsion properties than homemade cooking aquafaba. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05920-y.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA