Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.308
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 169(3): 497-509.e13, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431248

RESUMO

The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction.


Assuntos
Envelhecimento/patologia , Quitina/toxicidade , Quitinases/metabolismo , Pneumopatias/patologia , Animais , Aspergillus niger , Quitinases/genética , Citocinas/metabolismo , Células Epiteliais/patologia , Fibrose/patologia , Técnicas de Introdução de Genes , Inflamação/patologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Pyroglyphidae/química , Transdução de Sinais
2.
Semin Immunol ; 67: 101759, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031560

RESUMO

Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.


Assuntos
Asma , Quitinases , Hipersensibilidade , Animais , Humanos , Quitinases/metabolismo , Inflamação , Quitina/metabolismo , Mamíferos/metabolismo
3.
Trends Immunol ; 44(11): 868-870, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806931

RESUMO

Dietary fibers, including chitin, have a major impact on gastrointestinal (GI) physiology and immunity. Two recent articles, by Parrish et al. and Kim et al., credit depletion of dietary fibers or supplementation with chitin, with negative and positive effects, respectively, on the immune system of the murine digestive tract. This has relevant implications for food allergies and systemic metabolism.


Assuntos
Fibras na Dieta , Verrucomicrobia , Humanos , Animais , Camundongos , Verrucomicrobia/metabolismo , Trato Gastrointestinal , Quitina/metabolismo
4.
J Biol Chem ; 300(9): 107622, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098522

RESUMO

The primary distinction between insect and bacterial chitin degradation systems lies in the presence of a multi-modular endo-acting chitinase ChtII, in contrast to a processive exo-acting chitinase. Although the essential role of ChtII during insect development and its synergistic action with processive chitinase during chitin degradation has been established, the mechanistic understanding of how it deconstructs chitin remains largely elusive. Here OfChtII from the insect Ostrinia furnacalis was investigated employing comprehensive approaches encompassing biochemical and microscopic analyses. The results demonstrated that OfChtII truncations with more carbohydrate-binding modules (CBMs) exhibited enhanced hydrolysis activity, effectively yielding a greater proportion of fibrillary fractions from the compacted chitin substrate. At the single-molecule level, the CBMs in these OfChtII truncations have been shown to primarily facilitate chitin substrate association rather than dissociation. Furthermore, a greater number of CBMs was demonstrated to be essential for the enzyme to effectively bind to chitin substrates with high crystallinity. Through real-time imaging by high-speed atomic force microscopy, the OfChtII-B4C1 truncation with three CBMs was observed to shear chitin fibers, thereby generating fibrillary fragments and deconstructing the compacted chitin structure. This work pioneers in revealing the nanoscale mechanism of endo-acting multi-modular chitinase involved in chitin degradation, which provides an important reference for the rational design of chitinases or other glycoside hydrolases.


Assuntos
Quitina , Quitinases , Quitinases/metabolismo , Quitinases/química , Quitinases/genética , Animais , Quitina/metabolismo , Quitina/química , Mariposas/metabolismo , Mariposas/enzimologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Microscopia de Força Atômica , Hidrólise , Ligação Proteica
5.
J Biol Chem ; 300(6): 107365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750795

RESUMO

YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.


Assuntos
Quitina , Proteína 1 Semelhante à Quitinase-3 , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/química , Humanos , Quitina/metabolismo , Quitina/química , Quitinases/metabolismo , Quitinases/genética , Quitinases/química , Evolução Molecular , Hexosaminidases/metabolismo , Hexosaminidases/química , Hexosaminidases/genética , Domínio Catalítico , Substituição de Aminoácidos , Éxons , Sequência de Aminoácidos
6.
Plant Mol Biol ; 114(3): 41, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625509

RESUMO

Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.


Assuntos
Quitinases , Oryza , Oryza/genética , Genótipo , Rhizoctonia , Quitinases/genética
7.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605414

RESUMO

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Assuntos
Quitina , Quitinases , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Quitina/farmacologia , Quitina/uso terapêutico , Quitinases/uso terapêutico , Terapia de Imunossupressão , Metástase Linfática , Proteínas/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
8.
Biochem Biophys Res Commun ; 706: 149746, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461646

RESUMO

Polyglycine hydrolases are fungal effectors composed of an N-domain with unique sequence and structure and a C-domain that resembles ß-lactamases, with serine protease activity. These secreted fungal proteins cleave Gly-Gly bonds within a polyglycine sequence in corn ChitA chitinase. The polyglycine hydrolase N-domain (PND) function is unknown. In this manuscript we provide evidence that the PND does not directly participate in ChitA cleavage. In vitro analysis of site-directed mutants in conserved residues of the PND of polyglycine hydrolase Es-cmp did not specifically impair protease activity. Furthermore, in silico structural models of three ChitA-bound polyglycine hydrolases created by High Ambiguity Driven protein-protein DOCKing (HADDOCK) did not predict significant interactions between the PND and ChitA. Together these results suggest that the PND has another function. To determine what types of PND-containing proteins exist in nature we performed a computational analysis of Foldseek-identified PND-containing proteins. The analysis showed that proteins with PNDs are present throughout biology as either single domain proteins or fused to accessory domains that are diverse but are usually proteases or kinases.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Proteólise
9.
BMC Biotechnol ; 24(1): 35, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790016

RESUMO

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and ß-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and ß-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 µg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.


Assuntos
Quitinases , Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Quitinases/genética , Quitinases/metabolismo , Resistência à Doença/genética , Fusarium/genética , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Irã (Geográfico) , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
10.
BMC Plant Biol ; 24(1): 760, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118060

RESUMO

BACKGROUND: Soil-borne plant diseases represent a severe problem that negatively impacts the production of food crops. Actinobacteria play a vital role in biocontrolling soil-borne fungi. AIM AND OBJECTIVES: The target of the present study is to test the antagonistic activity of chitinase-producing Streptomyces cellulosae Actino 48 (accession number, MT573878) against Rhizoctonia solani. Subsequently, maximization of Actino 48 production using different fermentation processes in a stirred tank bioreactor. Finally, preparation of bio-friendly formulations prepared from the culture broth of Actino 48 using talc powder (TP) and bentonite in a natural as well as nano forms as carriers. Meanwhile, investigating their activities in reducing the damping-off and root rot diseases of peanut plants, infected by R. solani under greenhouse conditions. RESULTS: Actino 48 was found to be the most significant antagonistic isolate strain at p ≤ 0.05 and showed the highest inhibition percentage of fungal mycelium growth, which reached 97%. The results of scanning electron microscope (SEM) images analysis showed a large reduction in R. solani mycelia mass. Additionally, many aberrations changes and fungal hypha damages were found. Batch fermentation No. 2, which was performed using agitation speed of 200 rpm, achieved high chitinase activity of 0.1163 U mL- 1 min- 1 with a yield coefficient of 0.004 U mL- 1 min- 1 chitinase activity/g chitin. Nano-talc formulation of Actino 48 had more a significant effect compared to the other formulations in reducing percentages of damping-off and root rot diseases that equal to 19.05% and 4.76% with reduction percentages of 60% and 80%, respectively. The healthy survival percentage of peanut plants recorded 76.19%. Furthermore, the nano-talc formulation of Actino 48 was sufficient in increasing the dry weight of the peanut plants shoot, root systems, and the total number of peanut pods with increasing percentages of 47.62%, 55.62%, and 38.07%, respectively. CONCLUSION: The bio-friendly formulations of actinobacteria resulting from this investigation may play an active role in managing soil-borne diseases.


Assuntos
Arachis , Quitinases , Fermentação , Doenças das Plantas , Rhizoctonia , Streptomyces , Streptomyces/enzimologia , Rhizoctonia/fisiologia , Quitinases/metabolismo , Arachis/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia
11.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030474

RESUMO

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Assuntos
Antifúngicos , Candida auris , Quitinases , Testes de Sensibilidade Microbiana , Nanopartículas , Quitinases/farmacologia , Quitinases/metabolismo , Quitinases/química , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas/química , Candida auris/efeitos dos fármacos , Candida auris/genética , Enzimas Imobilizadas/química , Talaromyces/efeitos dos fármacos , Talaromyces/química , Talaromyces/enzimologia , Farmacorresistência Fúngica Múltipla , Hidrólise , Quitina/química , Quitina/farmacologia
12.
New Phytol ; 241(1): 394-408, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36866975

RESUMO

The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active ß-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.


Assuntos
Quitinases , Hidrolases , Proteômica , Nicotiana , Pseudomonas syringae , Doenças das Plantas/microbiologia
13.
New Phytol ; 244(3): 980-996, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39224928

RESUMO

Effector secretion is crucial for root endophytes to establish and protect their ecological niche. We used time-resolved transcriptomics to monitor effector gene expression dynamics in two closely related Sebacinales, Serendipita indica and Serendipita vermifera, during symbiosis with three plant species, competition with the phytopathogenic fungus Bipolaris sorokiniana, and cooperation with root-associated bacteria. We observed increased effector gene expression in response to biotic interactions, particularly with plants, indicating their importance in host colonization. Some effectors responded to both plants and microbes, suggesting dual roles in intermicrobial competition and plant-microbe interactions. A subset of putative antimicrobial effectors, including a GH18-CBM5 chitinase, was induced exclusively by microbes. Functional analyses of this chitinase revealed its antimicrobial and plant-protective properties. We conclude that dynamic effector gene expression underpins the ability of Sebacinales to thrive in diverse ecological niches with a single fungal chitinase contributing substantially to niche defense.


Assuntos
Quitinases , Endófitos , Raízes de Plantas , Transcriptoma , Quitinases/metabolismo , Quitinases/genética , Raízes de Plantas/microbiologia , Transcriptoma/genética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Simbiose/genética , Ascomicetos/fisiologia , Ascomicetos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos
14.
Cytokine ; 179: 156631, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710115

RESUMO

BACKGROUND: Chitinase 3 like-1 (CHI3L1) has been reported to function as an oncogene in many types of cancer. However, the biological function of CHI3L1 in nasopharyngeal carcinoma (NPC) remains unknown. METHODS: Differentially expressed genes (DEGs) in NPC tissues in GSE64634 and GSE12452 were downloaded from Gene Expression Omnibus (GEO). CHI3L1, interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) mRNA expression was examined by qRT-PCR. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. Western blot analysis was used to measure the changes of CHI3L1, nuclear factor-κappaB (NF-κB), and protein kinase B (Akt) pathways. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses were performed using DAVID database. RESULTS: We identified 3 overlapping DEGs using Draw Venn diagram, among which CHI3L1 was chosen for the following analyses. CHI3L1 was upregulated in NPC tissues and cells. CHI3L1 silencing suppressed inflammatory response by inactivating the NF-κB pathway and inhibited cell proliferation in NPC cells. On the contrary, CHI3L1 overexpression induced inflammatory response by activating the NF-κB pathway and promoted cell proliferation in NPC cells. According to GO and KEGG analyses, CHI3L1 positive regulates Akt signaling and is enriched in the PI3K-Akt pathway. CHI3L1 knockdown inhibited the Akt pathway, and CHI3L1 overexpression activated the Akt pathway in NPC cells. Akt overexpression abolished the effects of CHI3L1 knockdown on inflammatory response, NF-κB pathway, and proliferation in NPC cells. On the contrary, Akt knockdown abolished the effects of CHI3L1 overexpression on inflammatory response, NF-κB pathway, and proliferation in NPC cells. CONCLUSION: CHI3L1 knockdown inhibited NF-κB-dependent inflammatory response and promoting proliferation in NPC cells by inactivating the Akt pathway.


Assuntos
Proliferação de Células , Proteína 1 Semelhante à Quitinase-3 , Citocinas , NF-kappa B , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Regulação Neoplásica da Expressão Gênica , Inflamação/metabolismo , Inflamação/genética
15.
Insect Mol Biol ; 33(2): 157-172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160324

RESUMO

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.


Assuntos
Quitinases , Moscas Domésticas , Animais , Moscas Domésticas/genética , Moscas Domésticas/metabolismo , Quitinases/metabolismo , Larva , Proteínas Recombinantes/genética , Quitina/metabolismo
16.
Cancer Cell Int ; 24(1): 268, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068486

RESUMO

Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.

17.
Arch Biochem Biophys ; 752: 109854, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38081338

RESUMO

Processive movement is the key reaction for crystalline polymer degradation by enzyme. Product release is an important phenomenon in resetting the moving cycle, but how it affects chitinase kinetics was unknown. Therefore, we investigated the effect of diacetyl chitobiose (C2) on the biochemical activity and movement of chitinase A from Serratia marcescens (SmChiA). The apparent inhibition constant of C2 on crystalline chitin degradation of SmChiA was 159 µM. The binding position of C2 obtained by X-ray crystallography was at subsite +1, +2 and Trp275 interact with C2 at subsite +1. This binding state is consistent with the competitive inhibition obtained by biochemical analysis. The apparent inhibition constant of C2 on the moving velocity of high-speed (HS) AFM observations was 330 µM, which is close to the biochemical results, indicating that the main factor in crystalline chitin degradation is also the decrease in degradation activity due to inhibition of processive movement. The Trp275 is a key residue for making a sliding intermediate complex. SmChiA W275A showed weaker activity and affinity than WT against crystalline chitin because it is less processive than WT. In addition, biochemical apparent inhibition constant for C2 of SmChiA W275A was 45.6 µM. W275A mutant showed stronger C2 inhibition than WT even though the C2 binding affinity is weaker than WT. This result indicated that Trp275 is important for the interaction at subsite +1, but also important for making sliding intermediate complex and physically block the rebinding of C2 on the catalytic site for crystalline chitin degradation.


Assuntos
Quitinases , Quitinases/química , Quitinases/metabolismo , Quitina/química , Quitina/metabolismo , Domínio Catalítico , Ligação Proteica , Serratia marcescens/metabolismo
18.
Arch Microbiol ; 206(5): 220, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630188

RESUMO

Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.


Assuntos
Ascomicetos , Quitinases , MicroRNAs , Quitina , Quitinases/genética , MicroRNAs/genética
19.
Arch Microbiol ; 206(7): 311, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900220

RESUMO

In this study, the pathogenicity of local Beauveria bassiana strains was elucidated using molecular and metabolomics methodologies. Molecular verification of the B. bassiana-specific chitinase gene was achieved via phylogenetic analysis of the Bbchit1 region. Subsequent metabolomic analyses employing UPLC-Q-TOF-MS revealed a different number of non-volatile metabolite profiles among the six B. bassiana strains. Bb6 produced the most non-volatile compounds (17) out of a total of 18, followed by Bb15 (16) and Bb12 (15). Similarly, Bb5, Bb8, and Bb21, three non-virulent B. bassiana strains, produced 13, 14, and 14 metabolites, respectively. But unique secondary metabolites like bassianolide and beauvericin, pivotal for virulence and mite management, were exclusively found in the virulent strains (Bb6, Bb12, and Bb15) of B. bassiana. The distinctive non-volatile metabolomic profiles of these strains underscore their pathogenicity against Tetranychus truncatus, suggesting their promise in bio-control applications.


Assuntos
Beauveria , Metabolômica , Filogenia , Tetranychidae , Beauveria/genética , Beauveria/patogenicidade , Beauveria/metabolismo , Animais , Tetranychidae/microbiologia , Tetranychidae/genética , Virulência , Quitinases/metabolismo , Quitinases/genética , Metaboloma , Metabolismo Secundário
20.
Protein Expr Purif ; 223: 106562, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094814

RESUMO

Previous studies have demonstrated the presence of chitinase in Bacillus velezensis through extensive genomic sequencing and experimental analyses. However, the detailed structure, functional roles, and antifungal activity of these chitinases remain poorly characterized. In this study, genomic screening identified three genes-chiA, chiB, and lpmo10-associated with chitinase degradation in B. velezensis S161. These genes encode chitinases ChiA and ChiB, and lytic polysaccharide monooxygenase LPMO10. Both ChiA and ChiB contain two CBM50 binding domains and one catalytic domain, whereas LPMO10 includes a signal peptide and a single catalytic domain. The chitinases ChiA, its truncated variant ChiA2, and ChiB were heterologously expressed in Escherichia coli. The purified enzymes efficiently degraded colloidal chitin and inhibited the spore germination of Penicillium digitatum. Notably, even after losing one CBM50 domain, the resultant enzyme, consisting of the remaining CBM50 domain and the catalytic domain, maintained its colloidal chitin hydrolysis and antifungal activity, indicating commendable stability. These results underscore the role of B. velezensis chitinases in suppressing plant pathogenic fungi and provide a solid foundation for developing and applying chitinase-based biocontrol strategies.


Assuntos
Antifúngicos , Bacillus , Quitinases , Penicillium , Antifúngicos/farmacologia , Antifúngicos/química , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Quitina/química , Quitinases/química , Quitinases/farmacologia , Escherichia coli , Penicillium/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA