Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chemistry ; 30(2): e202302784, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37875464

RESUMO

The production of metal-organic framework (MOF) nanoplates with well-defined geometric morphology is remarkable for expanding their applications. Herein, the cobalt-based MOF nanoplates with hexagonal channels from a layer-pillared MOF are accomplished, via a molecular scalpel strategy, utilizing monodentate pyridine to replace the bidentate 4,4'-bipyridine. The morphology can be modified from nanorods to nanoplates with controllable thickness tuned by the amounts of pyridine. Succeeding carbonization treatment transforms the MOF nanoplates into Co particles homogeneously encapsulated in the nitrogen-doped carbon layers. The prepared catalyst with a unique platelike morphology displays a high half-wave potential of 0.88 V in oxygen reduction reaction. When used in primary Zn-air batteries, it delivers a high peak power density of 280 mW cm-2 . This work clarifies the structure-morphology-reactivity connection of MOF nanoplates.

2.
Chemosphere ; 358: 142161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685335

RESUMO

A metallic catalyst, Cobalt N-doped Carbon (Co@NC), was obtained from Zeolitic-Imidazolate Framework-67 (ZIF-67) for efficient aqueous nitrate (NO3-) removal. This advanced catalyst indicated remarkable efficiency by generating valuable ammonium (NH3/NH4+) via an environmentally friendly production technique during the nitrate treatment. Among various metals (Cu, Pt, Pd, Sn, Ru, and Ni), 3.6%Pt-Co@NC exhibited an exceptional nitrate removal, demonstrating a complete removal of 60 mg/L NO3--N (265 mg/L NO3-) in 30 min with the fastest removal kinetics (11.4 × 10-2 min-1) and 99.5% NH4+ selectivity. The synergistic effect of bimetallic Pt-Co@NC led to 100% aqueous NO3- removal, outperforming the reactivity by bare ZIF-67 (3.67%). The XPS analysis illustrated Co's promotor role for NO3- reduction to less oxidized nitrogen species and Pt's hydrogenation role for further reduction to NH4+. The durability test revealed a slight decrease in NO3- removal, which started from the third cycle (95%) and slowly proceeded to the sixth cycle (80.2%), while NH4+ selectivity exceeded 82% with no notable Co or Pt leaching throughout seven consecutive cycles. This research shed light on the significance of the impregnated Pt metal and Co exposed on the Co@NC surface for the catalytic nitrate treatment, leading to a sustainable approach for the effective removal of nitrate and economical NH4+ production.


Assuntos
Carbono , Nitratos , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Catálise , Nitratos/química , Poluentes Químicos da Água/química , Carbono/química , Cobalto/química , Imidazóis/química , Oxirredução , Estruturas Metalorgânicas/química , Compostos de Amônio/química
3.
Food Chem ; 441: 138372, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38219364

RESUMO

Herein, we synthesized a novel N-doped carbon layer encapsulated Fe/Co bimetallic nanoparticles (Fe/Co-NC), which exhibited superior oxidase-like activity due to the facilitation of electron penetration and the formation of metal-nitrogen active sites. Fe/Co-NC could catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) to blue oxTMB. Acetylcholinesterase (AChE) could catalyze the hydrolysis of thioacetylcholine to produce reducing thiocholine, which prevented TMB from oxidation. Thus, a portable hydrogel colorimetric sensor was developed for on-site and visual monitoring of AChE with the detection limit of 0.36 U L-1, and successfully applied to detect AChE in human erythrocyte samples. Furthermore, this platform was used to investigate the inhibition of triazophos on AChE activity.


Assuntos
Benzidinas , Praguicidas , Humanos , Praguicidas/análise , Oxirredutases/química , Acetilcolinesterase , Colorimetria , Hidrogéis
4.
ACS Appl Mater Interfaces ; 16(27): 35013-35023, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38937140

RESUMO

Electrochemical water splitting (EWS) is a promising way to attain H2, which has been deemed an ideal substitution for fossil fuels because of renewable and eco-friendly benefits. Developing an amorphous-based simple and structurally flexible non-noble catalyst to offer high performance for commercial applications has become a current interest. Amorphous cobalt-anchored nitrogen-doped carbon nanoparticles (Co@NC-NPs) were designed to have a low overpotential and Tafel as a bifunctional electrocatalyst (HER - 142 mV/80 mV dec-1 and OER - 250 mV/72 mV dec-1) to achieve 10 mA cm-2 in 1.0 KOH. FE-SEM and HR-TEM described the interconnected nanochain morphology and purity of Co@NC-NPs electrocatalyst, which were confirmed by EDX and elemental mapping. In a full cell water electrolyzer, Co@NC-NPs(+,-) may act as an anode and cathode electrode material to achieve 1.60 V @ 10 mA cm-2 in a wide pH. The efficient Co@NC-NPs are stable for 100 h without obvious recession. In solar cell applications, Co@NC-NPs(+,-) catalyst was employed as both positive and negative terminals and evolved enormous bubbles of O2 and H2. As previously mentioned, we covered the amorphization strategy with the optimistic role of structural flexibility and defects to enrich the active sites to improve the electrocatalytic stability. As a promising opinion, the amorphous electrocatalyst provides ultraefficiency for forthcoming developments in EWS.

5.
Huan Jing Ke Xue ; 44(5): 2635-2645, 2023 May 08.
Artigo em Zh | MEDLINE | ID: mdl-37177937

RESUMO

Peracetic acid (PAA), as a new oxidant, has attracted increasing attention in the treatment of refractory organic pollution in sewage. In this study, the nano core-shell Co@NC catalyst was prepared via etching and used to activate PAA to degrade sulfamethoxazole (SMX) in sewage. The results indicated that the degradation rate of SMX reached 98%, and its reaction rate constant was 0.80 min-1 under optimal conditions (catalyst dosage=0.02 g·L-1, PAA concentration=0.12 mmol·L-1, pH=7, SMX concentration=10 µmol·L-1). With the increase in PAA concentration and core-shell Co@NC dosage, the degradation efficiency of SMX increased. The study found that the core-shell Co@NC/PAA system had the best degradation effect on SMX under near-neutral conditions (pH 6.0-8.0), and both acidic and alkaline environments were not conducive to SMX degradation. HCO3- and humic acid showed significant inhibition on the degradation of SMX, whereas Cl- showed weak inhibition. In addition, through a free radical quenching experiment and electron paramagnetic resonance (EPR) detection, acetoxy radical (CH3CO2CO3·) were the main active species for the degradation of organic pollutants in the system. Transformation products (TPs) of SMX were analyzed by U-HPLC-Q-Exactive Orbitrap HRMS, and a possible degradation path of SMX was proposed. At the same time, the catalyst recycling experiment showed that the nano core-shell Co@NC catalyst had good stability and reusability.

6.
J Colloid Interface Sci ; 622: 971-977, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561615

RESUMO

The development of high-efficiency and low-cost oxygen reduction electrocatalysts have become an urgent need to push fuel cells into practical application. Herein, an effective electrocatalyst Co/NC was successfully constructed, which was derived from abundant peanut shells, obtained by doping with cobalt ions and pyrolyzing in NH3 atmosphere. Due to the abundant Co-N active sites triggered by Co-N heteroatomic interface, the prepared electrocatalysts present excellent oxygen reduction reaction (ORR) performance with more positive half-wave potential (E1/2 = 0.83 V), incremental limiting current density (JL = 5.45 mA cm-2), higher durability and stronger resistance to methanol, which is superior to that of Pt/C (E1/2 = 0.81 V and JL = 5.19 mA cm-2). This work proposes a potential strategy to synthesize efficient ORR electrocatalysts to instead of Pt-based catalysts.

7.
Biosens Bioelectron ; 215: 114567, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853326

RESUMO

Through V2O5 etching of ZIF-67 and subsequent pyrolysis in an argon flow, the V doped Co@NC (V/Co@NC) with mixed-valence Co(II)/Co(III) and V(III)/V(IV) was successfully obtained. V doping plays an important role in regulating the enzyme-like activity of Co@NC. Specifically, the Co@NC has both oxidase-like activity and peroxidase-mimic activity, while the V/Co@NC possesses the specific oxidase-like activity. Benefiting from the elevated Co2+ level due to electrons transfer from the reduced V(III) to Co3+ and recyclable redox reactions between the Co(III)/Co(II) and V(IV)/V(III) couples, the V/Co@NC displays 4-fold increase in the oxidase-like activity, smaller Km (0.18 mM) and larger Vmax (4.01 × 10-8 M s-1) toward TMB relative to Co@NC. The origin of V/Co@NC as oxidase mimic is likely attributed to the generation of 1O2 and •OH. Different phenolic compounds (PC), like gallic acid, kaempferol, caffeic acid, quercetin, and catechin, have distinct antioxidant capacity, showing a differential inhibiting effect on the V/Co@NC-TMB system. The different PC antioxidants in the V/Co@NC-TMB system lead to unique decrease in the absorbance at 652 nm (A652), resulting in a unique absorbance signal response mode. By choosing different combinations of A652 signals at various time points, multichannel information can be extracted from a single nanozyme for pattern recognition. Based on this, a colorimetric array sensing platform for the identification of PC is established successfully. Furthermore, the constructed sensor array can be used for quantifying and discriminating multiple PC antioxidants.


Assuntos
Técnicas Biossensoriais , Colorimetria , Antioxidantes , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Peróxido de Hidrogênio , Oxirredutases , Fenóis
8.
J Colloid Interface Sci ; 613: 182-193, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35033764

RESUMO

Metal-organic-frameworks (MOFs) derived carbon or nitrogen-doped carbon (NC) materials are usually used as electromagnetic wave (EMW) absorbers. However, the effective control of the composition and structure of composites is still a major challenge for the development of high-performance EMW absorbing materials. In this work, core-shell structure and bimetallic composition Cu/nitrogen doped carbon @Co/ nitrogen doped carbon (Cu/NC@Co/NC) composites were designed and synthesized through the thermal decomposition of Cu-MOF@Co-MOF precursor. Cu/NC@Co/NC composites with different compositions were obtained by changing the ratio of Co-MOF and Cu-MOF. The composite (Cu/NC@Co/NC-3.75) prepared using 3.75 mmol of Co(NO3)2·6H2O exhibits outstanding EMW absorption properties due to the optimized impedance matching and strong attenuation ability, which is caused by enhanced interfacial and dipolar polarization as well as multiple reflection and scattering. With the filler loading in paraffin of 35 wt%, the minimum reflection loss (RLmin) is up to -54.13 dB at 9.84 GHz with a thin thickness of 3 mm, and the effective absorption bandwidth (EAB, RL≤ - 10 dB) reaches 5.19 GHz (10.18-15.37 GHz) with the corresponding thickness of 2.5 mm. Compared with the Cu/NC and Co/NC, the Cu/NC@Co/NC-3.75 composite exhibits much better EMW absorbing performances caused by the bimetallic composition and the unique core-shell structure. This work provides a rational design for MOF-derived lightweight and broadband EMW absorbing materials.

9.
J Hazard Mater ; 403: 123987, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265026

RESUMO

Developing highly efficient and cost-effective catalyst with tuned microstructure holds great promise in the reduction of nitroaromatic compounds under mild reaction conditions. Herein, we report a new Co@NC-MF catalyst with a fascinating hierarchical flower-like architecture in situ assembled from uniform Co@NC nanoneedles, which can function as a favorable platform for the efficient reduction of nitroaromatic compounds in the presence of NaBH4. In addition with the structural advantage, the characterization and experimental results demonstrate the enormous advantage of interfacial synergistic catalysis in enhancing the catalytic performance. The outside electron-rich N-doped carbon layer as Lewis basic sites and the inside Co nanoparticles are responsible for the adsorption of 4-nitrophenol (4-NP) and generation of active hydrogen species, respectively. This work contributes to the construction of well-integrated composites with well-balanced interface synergy to boost the catalytic performance in various heterogeneous reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA