Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2309633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282381

RESUMO

Low-cost bifunctional electrocatalysts capable of efficiently driving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are needed for the growth of a green hydrogen economy. Herein, a Ru/Co3O4 heterojunction catalyst rich in oxygen vacancies (VO) and supported on carbon cloth (RCO-VO@CC) is prepared via a solid phase reaction (SPR) strategy. A RuO2/Co9S8@CC precursor (ROC@CC) is first prepared by loading Co9S8 nanosheets onto CC, following the addition of RuO2 nanoparticles (NPs). After the SPR process in an Ar atmosphere, Ru/Co3O4 heterojunctions with abundant VO are formed on the CC. The compositionally optimized RCO-VO@CC electrocatalyst with a Ru content of 0.55 wt.% exhibits very low overpotential values of 11 and 253 mV at 10 mA cm-2 for HER and OER, respectively, in 1 m KOH. Further, a low cell voltage of only 1.49 V is required to achieve a current density of 10 mA cm-2. Density functional theoretical calculations verify that the outstanding bifunctional electrocatalytic performance originates from synergistic charge transfer between Ru metal and VO-rich Co3O4. This work reports a novel approach toward a high-efficiency HER/OER electrocatalyst for energy storage and conversion.

2.
Small ; : e2401601, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554021

RESUMO

Photothermal catalysis, which applies solar energy to produce photogenerated e-/h+ pairs as well as provide heat input, is recognized as a promising technology for high conversion efficiency of CO2 to value-added solar fuels. In this work, a "shooting three birds with one stone" approach is demonstrated to significantly enhance the photothermal CO2 reduction over the Cs3Bi2Br9@Co3O4 (CBB@Co3O4) heterostructure. Initially, Co3O4 with photoinduced self-heating effect serves as a photothermal material to elevate the temperature of the photocatalyst, which kinetically accelerates the catalytic reaction. Meanwhile, a p-n heterojunction is constructed between the p-type Co3O4 and n-type Cs3Bi2Br9 semiconductors, which has an intrinsic built-in electric field (BEF) to facilitate the separation of photogenerated e-/h+ pairs. Furthermore, the mesoporous Co3O4 matrix can afford abundant active sites for promoting adsorption/activation of CO2 molecules. Benefiting from these synergistic effects, the as-developed CBB@Co3O4 heterostructure achieves an impressive CO2-to-CO conversion rate of 168.56 µmol g-1 h-1 with no extra heat input. This work provides an insightful guidance for the construction of effective photothermal catalysts for CO2 reduction with high solar-to-fuel conversion efficiency.

3.
Small ; 20(21): e2309363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098307

RESUMO

The challenge of the practical application of a water electrolyzer system lies in the development of low-manufacturing cost, highly active, and stable electrocatalysts to replace the noble metal ones, in order to enable environmentally friendly hydrogen production on a large scale. Herein, a facile method is proposed for boosting the performance of Co3O4 through the incorporation of large-sized single atoms. Due to the larger ionic radius of rare earth metals than that of Co, the incorporation elongates the bond length of Co─O, resulting in the narrowed d-p band centers and the high spin configuration, which is favorable for the interaction and charge transfer with absorbent (*OH). As a result, the Ce-incorporated Co3O4 with the longest Co─O bond length exhibits the best oxygen evolution reaction (OER) performance, specifically, the turnover frequency is over 17 times higher than that of pristine Co3O4 nanosheet under an overpotential of 400 mV. Powered by a commercial Si solar cell, a two-electrode solar water-splitting device combining Ce-incorporated Co3O4 and Pt delivers a solar-to-hydrogen conversion efficiency of 13.53%. The strategy could provide a new insight for improving the performance of OER electrocatalysts in acid toward practical applications.

4.
Small ; 20(1): e2305289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649146

RESUMO

Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).

5.
Chemistry ; 30(31): e202400329, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551107

RESUMO

Green hydrogen production through electrochemical overall water splitting has suffered from sluggish oxygen evolution reaction (OER) kinetics, inferior conversion efficiency, and high cost. Herein, ultrafine PtIr clusters are synthesized via an electrodeposition method and decorated on the Co3O4 nanoflowers assembled by nanowires (PtIr-Co3O4). The encouraging performances in electrochemical OER and hydrogen evolution reaction (HER) are achieved over the PtIr-Co3O4 catalyst, with the overpotentials as low as 410 and 237 mV at 100 mA cm-2, respectively, outperforming the commercial IrO2 and Pt/C catalysts. Due to the ultralow loading of PtIr clusters, the PtIr-Co3O4 catalyst exhibits 1270 A gIr -1 for OER at the overpotential of 400 mV. Our detailed analyses also show that the strong interactions between the ultrafine PtIr clusters and the Co3O4 nanoflowers enable the PtIr-Co3O4 catalyst to afford 10 mA cm-2 for the overall water splitting at the potential of 1.57 V, accompanied by high durability for 100 h.

6.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295405

RESUMO

The bimetallic metal-organic frameworks (MOFs), Cu/Co-MOF, was synthesized through a solvothermal method and calcined to obtain CuO/Co3O4composites. By adjusting the molar ratio between Cu and Co ions, a composite material of CuO/Co3O4(Cu:Co = 1:1) was developed and showed excellent sensing capabilities, and the response reached as high as 196.3 for 10 ppm H2S detection. Furthermore, the optimal operating temperature as low as 40 °C was found. In comparison with the sensors prepared by pristine CuO and pristine Co3O4, the sensor based on CuO/Co3O4composite exhibited a significant response. Additionally, the sensor can detect H2S gas down to 300 ppb. The gas sensing mechanism is discussed in depth from the perspective of p-p heterojunction formation between the p-type CuO and p-type Co3O4. The as-prepared CuO/Co3O4composite-based sensor is expected to find practical application in the low-power monitoring of H2S.

7.
Environ Res ; 248: 118411, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316382

RESUMO

As a typical heterogeneous catalytic process, the catalytic combustion of toluene over Co3O4-based catalysts is strongly depends on the surface properties of catalysts, especially the concentration of surface oxygen defects. Here, a novel way was proposed to construct chemically bonded CuO-Co3O4 interface by chemical deposition of CuO onto Co3O4 nanoflowers. The interfacial refinement effect between CuO and Co3O4 support disrupted the ordered atomic arrangement and created countless unsaturated coordination sites at CuO-Co3O4 interface, inducing a significant generation of surface oxygen defects. Surface-rich oxygen vacancies enhanced the capacity of 20%CuO/Co3O4-R to adsorb and activate oxygen species. Benefiting from this, 90 % toluene conversion was reached at 228 °C over 20%CuO/Co3O4-R, which was much lower than that over 20%CuO/Co3O4-S prepared by impregnation method and CuO/Co3O4-mix obtained by mechanically mixing way. In-situ DRIFTS analysis revealed that toluene could be directly decomposed into benzaldehyde at the highly defective CuO-Co3O4 interface, leading to toluene oxidation following the path of toluene → benzaldehyde → benzoate → maleic anhydride → water and carbon dioxide over 20%CuO/Co3O4-R, which was significantly different from decomposition mechanism over 20%CuO/Co3O4-S. Additionally, 20%CuO/Co3O4-R displayed terrific recyclability and outstanding stability, showing good application potential.


Assuntos
Benzaldeídos , Cobalto , Óxidos , Oxigênio , Oxirredução , Oxigênio/química , Tolueno/análise
8.
Mikrochim Acta ; 191(5): 234, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568389

RESUMO

The detection of hazardous CO gas is an important research content in the domain of the Internet of Things (IoT). Herein, we introduced a facile metal-organic frameworks (MOFs)-templated strategy to synthesize Cd-doped Co3O4 nanosheets (Cd-Co3O4 NSs) aimed at boosting the CO-sensing performance. The synthesized Cd-Co3O4 NSs feature a multihole nanomeshes structure and a large specific surface area (106.579 m2·g-1), which endows the sensing materials with favorable gas diffusion and interaction ability. Furthermore, compared with unadulterated Co3O4, the 2 mol % Cd-doped Co3O4 (2% Cd-Co3O4) sensor exhibits enhanced sensitivity (244%) to 100 ppm CO at 200 °C and a comparatively low experimental limit of detection (0.5 ppm/experimental value). The 2% Cd-Co3O4 NSs show good selectivity, reproducibility, and long-term stability. The improved CO sensitivity signal is probably owing to the stable nanomeshes construction, high surface area, and rich oxygen vacancies caused by cadmium doping. This study presents a facile avenue to promote the sensing performance of p-type metal oxide semiconductors by enhancing the surface activity of Co3O4 combined with morphology control and component regulation.

9.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832980

RESUMO

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Assuntos
Técnicas Eletroquímicas , Análise de Alimentos , Análise de Perigos e Pontos Críticos de Controle , Nanocompostos , Zearalenona , Zearalenona/análise , Análise de Perigos e Pontos Críticos de Controle/métodos , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Nanocompostos/química , Nanocompostos/normas , Eletrodos , Ouro/química , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
10.
Nano Lett ; 23(9): 3739-3747, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37075087

RESUMO

The construction of a desirable, environmentally friendly, and cost-effective nanoheterostructure photoanode to treat refractory organics is critical and challenging. Herein, we unveiled a hierarchical dendritic Co3O4-SnO2 heterostructure via a sequential hydrothermal process. The time of the secondary hydrothermal process can control the size of the ultrathin SnO2 nanosheets on the basis of the Ostwald solidification mass conservation principle. Ti/Co3O4-SnO2-168h with critical growth size demonstrated a photoelectrocatalysis degradation rate of ∼93.3% for a high dye concentrate of 90 mg/L with acceptable long-term cyclability and durability over reported Co3O4-based electrodes because of the large electrochemically active area, low charge transfer resistance, and high photocurrent intensity. To gain insight into the photoelectric synergy, we proposed a type-II heterojunction between Co3O4 and SnO2, which prevents photogenerated carriers' recombination and improves the generation of dominant active species •O2-, 1O2, and h+. This work uncovered the Ti/Co3O4-SnO2-168 as a promising catalyst and provided a simple and inexpensive assembly strategy to obtain binary integrated nanohybrids with targeted functionalities.

11.
J Environ Sci (China) ; 143: 201-212, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644017

RESUMO

Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.


Assuntos
Benzeno , Cobalto , Oxirredução , Óxidos , Prata , Benzeno/química , Cobalto/química , Prata/química , Catálise , Óxidos/química , Modelos Químicos , Poluentes Atmosféricos/química
12.
Angew Chem Int Ed Engl ; : e202407509, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877769

RESUMO

Although Ru-based materials are among the outstanding catalysts for the oxygen evolution reaction (OER), the instability issue still haunts them and impedes the widespread application. The instability of Ru-based OER catalysts is generally ascribed to the formation of soluble species through the over-oxidation of Ru and structural decomposition caused by involvement of lattice oxygen. Herein, an effective strategy of selectively activating the lattice oxygen around Ru site is proposed to improve the OER activity and stability. Our synthesized spinel-type electrocatalyst of Ru and Zn co-doped Co3O4 showed an ultralow overpotential of 172 mV at 10 mA cm-2 and a long-term stability reaching to 100 hours at 10 mA cm-2 for alkaline OER. The experimental results and theoretical simulations demonstrated that the lattice oxygen site jointly connected with the octahedral Ru and tetrahedral Zn atoms became more active than other oxygen sites near Ru atom, which further lowered the reaction energy barriers and avoided generating excessive oxygen vacancies to enhance the structural stability of Ru sites. The findings hope to provide a new perspective to improve the catalytic activity of Ru-incorporated OER catalysts and the stability of lattice-oxygen-mediated mechanism.

13.
Small ; 19(42): e2303424, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330654

RESUMO

Ammonia (NH3 ) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is being explored as a promising strategy for green to synthesize industrial-scale NH3 , which has nonetheless involved complex multi-reaction process. This work presents a Pd-doped Co3 O4 nanoarray on titanium mesh (Pd-Co3 O4 /TM) electrode for highly efficient and selective electrocatalytic NO3 - RR to NH3 at low onset potential. The well-designed Pd-Co3 O4 /TM delivers a large NH3 yield of 745.6 µmol h-1 cm-2 and an extremely high Faradaic efficiency (FE) of 98.7% at -0.3 V with strong stability. These calculations further indicate that the doping Co3 O4 with Pd improves the adsorption characteristic of Pd-Co3 O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn-NO3 - battery realizes a power density of 3.9 mW cm-2 and an excellent FE of 98.8% for NH3 .

14.
Small ; : e2304650, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863809

RESUMO

Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2 O3 , SiO2 , TiO2 , SnO2 , and HfO2 , prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3 O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3 O4 following the order of HfO2 > SnO2 > TiO2 > Al2 O3 , SiO2 . An optimal HfO2 layer thickness of 12 nm enhances the Co3 O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm-2 in 1 m H2 SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2 , revealing a major role of the HfO2 |Co3 O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.

15.
Small ; 19(19): e2206695, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775877

RESUMO

Spinel cobalt oxide displays excellent photocatalytic performance, especially in solar driven water oxidation. However, the process of water reduction to hydrogen is considered as the Achilles' heel of solar water splitting over Co3 O4 owing to its low conduction band. Enhancement of the water splitting efficiency using Co3 O4 requires deeper insights of the carrier dynamics during water splitting process. Herein, the carrier dynamic kinetics of colloidal Co3 O4 quantum dots-Pt hetero-junctions is studied, which mimics the hydrogen reduction process during water splitting. It is showed that the quantum confinement effect induced by the small QD size raised the conduction band edge position of Co3 O4 QDs, so that the ligand-to-metal charge transfer from 2p state of oxygen to 3d state of Co2+ occurs, which is necessary for overall water splitting and cannot be achieved in Co3 O4 bulk crystals. The findings in this work provide insights of the photocatalytic mechanism of Co3 O4 catalysts and benefit rational design of Co3 O4 -based photocatalytic systems.

16.
Small ; 19(8): e2206956, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504322

RESUMO

Co3 O4  with high theoretical capacitance is a promising electrode material for high-end energy applications, yet the unexcited bulk electrochemical activity, low conductivity, and poor kinetics of Co3 O4  lead to unsatisfactory charge storage capacity. For boosting its energy storage capability, rare earth (RE)-doped Co3 O4  nanostructures with abundant oxygen vacancies are constructed by simple, economical, and universal chemical precipitation. By changing different types of RE (RE = La, Yb, Y, Ce, Er, Ho, Nd, Eu) as dopants, the RE-doped Co3 O4  nanostructures can be well transformed from large nanosheets to coiled tiny nanosheets and finally to ultrafine nanoparticles, meanwhile, their specific surface area, pore distribution, the ratio of Co2+ /Co3+ , oxygen vacancy content, crystalline phase, microstrain parameter, and the capacitance performance are regularly affected. Notably, Eu-doped Co3 O4  nanoparticles with good cycle stability show a maximum specific capacitance of 1021.3 F g-1 (90.78 mAh g-1 ) at 2 A g-1 , higher than 388 F g-1 (34.49 mAh g-1 ) of pristine Co3 O4  nanosheets. The assembling asymmetric supercapacitor delivers a high energy density of 48.23 Wh kg-1  at high power density of 1.2 kW kg-1 . These findings denote the significance and great potential of RE-doped Co3 O4  in the development of high-efficiency energy storage.

17.
Small ; 19(3): e2205532, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399646

RESUMO

A major issue with Li-O2 batteries is their slow oxygen reduction and evolution kinetics, necessitating catalysts with high catalytic activity to improve reaction kinetics and cycle stability. Herein, a nano-heterostructured catalyst composed of Co3 O4 and Fe2 O3 (Co3 O4 /Fe2 O3 ) with a porous rod morphology is achieved through an interfacial engineering strategy by constructing Fe2 O3 on the Co3 O4 surface, which can function as a high-performance cathode in order to efficiently encourage the oxygen reduction and evolution while also reduce the battery polarization during charging and discharging. The density functional theory (DFT) calculations show the differences in charge density at the interface of nano-heterostructures, demonstrating the occurrence of an electron transfer process in the interface region of Co3 O4 and Fe2 O3 , implying a strong electronic coupling transfer, and in turn changing the electronic structure of the Co3 O4 . This significantly reduces the adsorption energy of LiO2 intermediates, thereby effectively lowering the overpotential. The resultant Li-O2 battery has larger discharge specific capacity, lower overpotential for the efficient oxygen evolution/reduction, as well as good cycling stability of 280 cycles. This work demonstrates an effective method to fabricate the nano-heterostrucutred materials with enhanced catalytic efficiency for advanced energy applications.

18.
Small ; 19(28): e2301324, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37005337

RESUMO

The design of economical, efficient, and robust bifunctional oxygen electrocatalysts is greatly imperative for the large-scale commercialization of rechargeable Zn-air battery (ZAB) technology. Herein, the neoteric design of an advanced bifunctional electrocatalyst composed of CoN/Co3 O4 heterojunction hollow nanoparticles in situ encapsulated in porous N-doped carbon nanowires (denoted as CoN/Co3 O4 HNPs@NCNWs hereafter) is reported. The simultaneous implementation of interfacial engineering, nanoscale hollowing design, and carbon-support hybridization renders the synthesized CoN/Co3 O4 HNPs@NCNWs with modified electronic structure, improved electric conductivity, enriched active sites, and shortened electron/reactant transport pathways. Density functional theory computations further demonstrate that the construction of a CoN/Co3 O4 heterojunction can optimize the reaction pathways and reduce the overall reaction barriers. Thanks to the composition and architectural superiorities, the CoN/Co3 O4 HNPs@NCNWs exhibit distinguished oxygen reduction reaction and oxygen evolution reaction performance with a low reversible overpotential of 0.725 V and outstanding stability in KOH medium. More encouragingly, the homemade rechargeable liquid and flexible all-solid-state ZABs utilizing CoN/Co3 O4 HNPs@NCNWs as the air-cathode deliver higher peak power densities, larger specific capacities, and robust cycling stability, exceeding the commercial Pt/C + RuO2 benchmark counterparts. The concept of heterostructure-induced electronic modification herein may shed light on the rational design of advanced electrocatalysts for sustainable energy applications.

19.
Small ; 19(29): e2207114, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026427

RESUMO

The foam copper (FCu) has been first used as a promising supporting material to prepare a photo-activated catalyst of Co3 O4 /Cux O/FCu, in which the fine Co3 O4 particles are inlayed on the Cux O nanowires to form a Z-type heterojunction array connected by substrate Cu. The prepared samples have been used as a photo-activated catalyst to directly decompose gaseous benzene and the optimized Co3 O4 /Cux O/FCu demonstrates a 99.5% removal efficiency and 100% mineralizing rate within 15 min in benzene concentration range from 350 to 4000 ppm under simulate solar light irradiation. To track the reactive mechanism, a series of MOx /Cux O/FCu (M = Mn, Fe, Co, Ni, Cu, Zn) is prepared and a novel photo-activated direct catalytic oxidation route is proposed based on the comparative investigation of material properties. Moreover, the approach grew in situ via layer upon layer oxidation on FCu dedicates to the extra lasting reusability and the easy accessibility in the diverse situations. This work provides a novel strategy for the preparation of Cu connected series multidimensional heterojunction array and a promising application for the quick abatement of the high-leveled concentration gaseous benzene and its derivatives from the industrial discharged flow or the accident scene's leakage.

20.
Chemistry ; 29(49): e202301478, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37332063

RESUMO

Electrochemical water splitting is an environmentally friendly and effective energy storage method. However, it is still a huge challenge to prepare non-noble metal based electrocatalysts that possess high activity and long-term durability to realize efficient water splitting. Here, we present a novel method of low-temperature phosphating for preparing CoP/Co3 O4 heterojunction nanowires catalyst on titanium mesh (TM) substrate that can be used for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting. CoP/Co3 O4 @TM heterojunction showed an excellent catalytic performance and long-term durability in 1.0 M KOH electrolyte. The overpotential of CoP/Co3 O4 @TM heterojunction was only 257 mV at 20 mA cm-2 during the OER process, and it could work stably more than 40 h at 1.52 V versus reversible hydrogen electrode (vs. RHE). During the HER process, the overpotential of CoP/Co3 O4 @TM heterojunction was only 98 mV at -10 mA cm-2 . More importantly, when used as anodic and cathodic electrocatalyst, they achieved 10 mA cm-2 at 1.59 V. The Faradaic efficiencies of OER and HER were 98.4 % and 99.4 %, respectively, outperforming Ru/Ir-based noble metal electrocatalysts and other non-noble metal electrocatalysts for overall water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA