Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 321, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32326892

RESUMO

BACKGROUND: The wide variation in the size of fungal genomes is well known, but the reasons for this size variation are less certain. Here, we present a chromosome-scale assembly of ectophytic Peltaster fructicola, a surface-dwelling extremophile, based on long-read DNA sequencing technology, to assess possible mechanisms associated with genome compaction. RESULTS: At 18.99 million bases (Mb), P. fructicola possesses one of the smallest known genomes sequence among filamentous fungi. The genome is highly compact relative to other fungi, with substantial reductions in repeat content, ribosomal DNA copies, tRNA gene quantity, and intron sizes, as well as intergenic lengths and the size of gene families. Transposons take up just 0.05% of the entire genome, and no full-length transposon was found. We concluded that reduced genome sizes in filamentous fungi such as P. fructicola, Taphrina deformans and Pneumocystis jirovecii occurred through reduction in ribosomal DNA copy number and reduced intron sizes. These dual mechanisms contrast with genome reduction in the yeast fungus Saccharomyces cerevisiae, whose small and compact genome is associated solely with intron loss. CONCLUSIONS: Our results reveal a unique genomic compaction architecture of filamentous fungi inhabiting plant surfaces, and broaden the understanding of the mechanisms associated with compaction of fungal genomes.


Assuntos
Ascomicetos/genética , Cromossomos Fúngicos/genética , Fungos/genética , Genoma Fúngico/genética , Ascomicetos/classificação , Ascomicetos/fisiologia , Genômica/métodos , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
2.
3 Biotech ; 8(11): 472, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30456006

RESUMO

Mobile genetic elements involved in mediating horizontal transfer events contribute to bacterial evolution, and bacterial genomic plasticity and instability result in variation in functional genetic information in Streptomyces secondary metabolism. In a previous study, we reported the complete genome sequence of the industrial Streptomyces strain F613-1, which produces high yields of clavulanic acid. In this study, we used comparative genomics and bioinformatics to investigate the unique genomic features of this strain. Taken together, comparative genomics were used to systematically investigate secondary metabolism capabilities and indicated that frequent exchange of genetic materials between Streptomyces replicons may shape the remarkable diversities in their secondary metabolite repertoires. Moreover, a 136.9-kb giant region of plasticity (RGP) was found in the F613-1 chromosome, and the chromosome and plasmid pSCL4 are densely packed with an exceptionally large variety of potential secondary metabolic gene clusters, involving several determinants putatively accounting for antibiotic production. In addition, the differences in the architecture and size of plasmid pSCL4 between F613-1 and ATCC 27064 suggest that the pSCL4 plasmid could evolve from pSCL4-like and pSCL2-like extrachromosomal replicons. Furthermore, the genomic analyses revealed that strain F613-1 has developed specific genomic architectures and genetic patterns that are well suited to meet the requirements of industrial innovation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA