Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2044-2061, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172561

RESUMO

Phenotypic sex-based differences exist for many complex traits. In other cases, phenotypes may be similar, but underlying biology may vary. Thus, sex-aware genetic analyses are becoming increasingly important for understanding the mechanisms driving these differences. To this end, we provide a guide outlining the current best practices for testing various models of sex-dependent genetic effects in complex traits and disease conditions, noting that this is an evolving field. Insights from sex-aware analyses will not only teach us about the biology of complex traits but also aid in achieving the goals of precision medicine and health equity for all.


Assuntos
Modelos Genéticos , Caracteres Sexuais , Animais , Feminino , Masculino , Herança Multifatorial , Fenótipo , Controle de Qualidade , Estudo de Associação Genômica Ampla , Guias como Assunto , Interação Gene-Ambiente , Humanos
2.
Cell ; 185(22): 4233-4248.e27, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36306736

RESUMO

The human genome contains hundreds of thousands of regions harboring copy-number variants (CNV). However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs have been ascertainable from SNP-array data generated by large biobanks. We developed a computational approach leveraging haplotype sharing in biobank cohorts to more sensitively detect CNVs. Applied to UK Biobank, this approach accounted for approximately half of all rare gene inactivation events produced by genomic structural variation. This CNV call set enabled a detailed analysis of associations between CNVs and 56 quantitative traits, identifying 269 independent associations (p < 5 × 10-8) likely to be causally driven by CNVs. Putative target genes were identifiable for nearly half of the loci, enabling insights into dosage sensitivity of these genes and uncovering several gene-trait relationships. These results demonstrate the ability of haplotype-informed analysis to provide insights into the genetic basis of human complex traits.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Variações do Número de Cópias de DNA , Fenótipo , Genoma Humano , Polimorfismo de Nucleotídeo Único/genética
3.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838112

RESUMO

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Feminino , Instabilidade Genômica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Adulto Jovem
4.
Cell ; 177(4): 1022-1034.e6, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051098

RESUMO

Early genome-wide association studies (GWASs) led to the surprising discovery that, for typical complex traits, most of the heritability is due to huge numbers of common variants with tiny effect sizes. Previously, we argued that new models are needed to understand these patterns. Here, we provide a formal model in which genetic contributions to complex traits are partitioned into direct effects from core genes and indirect effects from peripheral genes acting in trans. We propose that most heritability is driven by weak trans-eQTL SNPs, whose effects are mediated through peripheral genes to impact the expression of core genes. In particular, if the core genes for a trait tend to be co-regulated, then the effects of peripheral variation can be amplified such that nearly all of the genetic variance is driven by weak trans effects. Thus, our model proposes a framework for understanding key features of the architecture of complex traits.


Assuntos
Regulação da Expressão Gênica/genética , Hereditariedade/genética , Herança Multifatorial/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Teóricos , Fenótipo , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética
5.
Cell ; 179(6): 1424-1435.e8, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761530

RESUMO

The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.


Assuntos
Embrião de Mamíferos/metabolismo , Testes Genéticos , Herança Multifatorial/genética , Adulto , Família , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
6.
Annu Rev Genet ; 54: 439-464, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32897739

RESUMO

The complexity of heredity has been appreciated for decades: Many traits are controlled not by a single genetic locus but instead by polymorphisms throughout the genome. The importance of complex traits in biology and medicine has motivated diverse approaches to understanding their detailed genetic bases. Here, we focus on recent systematic studies, many in budding yeast, which have revealed that large numbers of all kinds of molecular variation, from noncoding to synonymous variants, can make significant contributions to phenotype. Variants can affect different traits in opposing directions, and their contributions can be modified by both the environment and the epigenetic state of the cell. The integration of prospective (synthesizing and analyzing variants) and retrospective (examining standing variation) approaches promises to reveal how natural selection shapes quantitative traits. Only by comprehensively understanding nature's genetic tool kit can we predict how phenotypes arise from the complex ensembles of genetic variants in living organisms.


Assuntos
Locos de Características Quantitativas/genética , Seleção Genética/genética , Variação Genética/genética , Genótipo , Humanos , Fenótipo , Estudos Prospectivos , Estudos Retrospectivos , Saccharomycetales/genética
7.
Am J Hum Genet ; 111(4): 680-690, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38490208

RESUMO

We propose TetraHer, a method for estimating the liability heritability of binary phenotypes. TetraHer has five key features. First, it can be applied to data from complex pedigrees that contain multiple types of relationships. Second, it can correct for ascertainment of cases or controls. Third, it can accommodate covariates. Fourth, it can model the contribution of common environment. Fifth, it produces a likelihood that can be used for significance testing. We first demonstrate the validity of TetraHer on simulated data. We then use TetraHer to estimate liability heritability for 229 codes from the tenth International Classification of Diseases (ICD-10). We identify 107 codes with significant heritability (p < 0.05/229), which can be used in future analyses for investigating the genetic architecture of human diseases.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Humanos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
Am J Hum Genet ; 111(7): 1462-1480, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866020

RESUMO

Understanding the contribution of gene-environment interactions (GxE) to complex trait variation can provide insights into disease mechanisms, explain sources of heritability, and improve genetic risk prediction. While large biobanks with genetic and deep phenotypic data hold promise for obtaining novel insights into GxE, our understanding of GxE architecture in complex traits remains limited. We introduce a method to estimate the proportion of trait variance explained by GxE (GxE heritability) and additive genetic effects (additive heritability) across the genome and within specific genomic annotations. We show that our method is accurate in simulations and computationally efficient for biobank-scale datasets. We applied our method to common array SNPs (MAF ≥1%), fifty quantitative traits, and four environmental variables (smoking, sex, age, and statin usage) in unrelated white British individuals in the UK Biobank. We found 68 trait-E pairs with significant genome-wide GxE heritability (p<0.05/200) with a ratio of GxE to additive heritability of ≈6.8% on average. Analyzing ≈8 million imputed SNPs (MAF ≥0.1%), we documented an approximate 28% increase in genome-wide GxE heritability compared to array SNPs. We partitioned GxE heritability across minor allele frequency (MAF) and local linkage disequilibrium (LD) values, revealing that, like additive allelic effects, GxE allelic effects tend to increase with decreasing MAF and LD. Analyzing GxE heritability near genes highly expressed in specific tissues, we find significant brain-specific enrichment for body mass index (BMI) and basal metabolic rate in the context of smoking and adipose-specific enrichment for waist-hip ratio (WHR) in the context of sex.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Humanos , Herança Multifatorial/genética , Masculino , Feminino , Característica Quantitativa Herdável , Fenótipo , Modelos Genéticos , Locos de Características Quantitativas
9.
Proc Natl Acad Sci U S A ; 121(24): e2404364121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833469

RESUMO

Sex difference (SD) is ubiquitous in humans despite shared genetic architecture (SGA) between the sexes. A univariate approach, i.e., studying SD in single traits by estimating genetic correlation, does not provide a complete biological overview, because traits are not independent and are genetically correlated. The multivariate genetic architecture between the sexes can be summarized by estimating the additive genetic (co)variance across shared traits, which, apart from the cross-trait and cross-sex covariances, also includes the cross-sex-cross-trait covariances, e.g., between height in males and weight in females. Using such a multivariate approach, we investigated SD in the genetic architecture of 12 anthropometric, fat depositional, and sex-hormonal phenotypes. We uncovered sexual antagonism (SA) in the cross-sex-cross-trait covariances in humans, most prominently between testosterone and the anthropometric traits - a trend similar to phenotypic correlations. 27% of such cross-sex-cross-trait covariances were of opposite sign, contributing to asymmetry in the SGA. Intriguingly, using multivariate evolutionary simulations, we observed that the SGA acts as a genetic constraint to the evolution of SD in humans only when selection is sexually antagonistic and not concordant. Remarkably, we found that the lifetime reproductive success in both the sexes shows a positive genetic correlation with anthropometric traits, but not with testosterone. Moreover, we demonstrated that genetic variance is depleted along multivariate trait combinations in both the sexes but in different directions, suggesting absolute genetic constraint to evolution. Our results indicate that testosterone drives SA in contemporary humans and emphasize the necessity and significance of using a multivariate framework in studying SD.


Assuntos
Fenótipo , Caracteres Sexuais , Testosterona , Humanos , Masculino , Feminino , Análise Multivariada
10.
Am J Hum Genet ; 110(1): 13-22, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36460009

RESUMO

Polygenic risk score (PRS) has demonstrated its great utility in biomedical research through identifying high-risk individuals for different diseases from their genotypes. However, the broader application of PRS to the general population is hindered by the limited transferability of PRS developed in Europeans to non-European populations. To improve PRS prediction accuracy in non-European populations, we develop a statistical method called SDPRX that can effectively integrate genome wide association study summary statistics from different populations. SDPRX automatically adjusts for linkage disequilibrium differences between populations and characterizes the joint distribution of the effect sizes of a variant in two populations to be both null, population specific, or shared with correlation. Through simulations and applications to real traits, we show that SDPRX improves the prediction performance over existing methods in non-European populations.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Fatores de Risco , Genótipo
11.
Am J Hum Genet ; 110(1): 23-29, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36480927

RESUMO

We present LDAK-GBAT, a tool for gene-based association testing using summary statistics from genome-wide association studies that is computationally efficient, produces well-calibrated p values, and is significantly more powerful than existing tools. LDAK-GBAT takes approximately 30 min to analyze imputed data (2.9M common, genic SNPs), requiring less than 10 Gb memory. It shows good control of type 1 error given an appropriate reference panel. Across 109 phenotypes (82 from the UK Biobank, 18 from the Million Veteran Program, and nine from the Psychiatric Genetics Consortium), LDAK-GBAT finds on average 19% (SE: 1%) more significant genes than the existing tool sumFREGAT-ACAT, with even greater gains in comparison with MAGMA, GCTA-fastBAT, sumFREGAT-SKAT-O, and sumFREGAT-PCA.


Assuntos
Testes Genéticos , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
12.
Am J Hum Genet ; 110(1): 44-57, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608684

RESUMO

Integrative genetic association methods have shown great promise in post-GWAS (genome-wide association study) analyses, in which one of the most challenging tasks is identifying putative causal genes and uncovering molecular mechanisms of complex traits. Recent studies suggest that prevailing computational approaches, including transcriptome-wide association studies (TWASs) and colocalization analysis, are individually imperfect, but their joint usage can yield robust and powerful inference results. This paper presents INTACT, a computational framework to integrate probabilistic evidence from these distinct types of analyses and implicate putative causal genes. This procedure is flexible and can work with a wide range of existing integrative analysis approaches. It has the unique ability to quantify the uncertainty of implicated genes, enabling rigorous control of false-positive discoveries. Taking advantage of this highly desirable feature, we further propose an efficient algorithm, INTACT-GSE, for gene set enrichment analysis based on the integrated probabilistic evidence. We examine the proposed computational methods and illustrate their improved performance over the existing approaches through simulation studies. We apply the proposed methods to analyze the multi-tissue eQTL data from the GTEx project and eight large-scale complex- and molecular-trait GWAS datasets from multiple consortia and the UK Biobank. Overall, we find that the proposed methods markedly improve the existing putative gene implication methods and are particularly advantageous in evaluating and identifying key gene sets and biological pathways underlying complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Locos de Características Quantitativas/genética , Simulação por Computador , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
13.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38865495

RESUMO

Understanding the expression level and evolutionary rate of associated genes with human polygenic diseases provides crucial insights into their disease-contributing roles. In this work, we leveraged genome-wide association studies (GWASs) to investigate the relationship between the genetic association and both the evolutionary rate (dN/dS) and expression level of human genes associated with the two polygenic diseases of schizophrenia and coronary artery disease. Our findings highlight a distinct variation in these relationships between the two diseases. Genes associated with both diseases exhibit a significantly greater variance in evolutionary rate compared to those implicated in monogenic diseases. Expanding our analyses to 4,756 complex traits in the GWAS atlas database, we unraveled distinct trait categories with a unique interplay among the evolutionary rate, expression level, and genetic association of human genes. In most polygenic traits, highly expressed genes were more associated with the polygenic phenotypes compared to lowly expressed genes. About 69% of polygenic traits displayed a negative correlation between genetic association and evolutionary rate, while approximately 30% of these traits showed a positive correlation between genetic association and evolutionary rate. Our results demonstrate the presence of a spectrum among complex traits, shaped by natural selection. Notably, at opposite ends of this spectrum, we find metabolic traits being more likely influenced by purifying selection, and immunological traits that are more likely shaped by positive selection. We further established the polygenic evolution portal (evopolygen.de) as a resource for investigating relationships and generating hypotheses in the field of human polygenic trait evolution.


Assuntos
Evolução Molecular , Estudo de Associação Genômica Ampla , Herança Multifatorial , Fenótipo , Esquizofrenia , Humanos , Esquizofrenia/genética , Doença da Artéria Coronariana/genética
14.
Am J Hum Genet ; 109(1): 24-32, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34861179

RESUMO

Genetic correlation is an important parameter in efforts to understand the relationships among complex traits. Current methods that analyze individual genotype data for estimating genetic correlation are challenging to scale to large datasets. Methods that analyze summary data, while being computationally efficient, tend to yield estimates of genetic correlation with reduced precision. We propose SCORE (scalable genetic correlation estimator), a randomized method of moments estimator of genetic correlation that is both scalable and accurate. SCORE obtains more precise estimates of genetic correlations relative to summary-statistic methods that can be applied at scale; it achieves a 44% reduction in standard error relative to LD-score regression (LDSC) and a 20% reduction relative to high-definition likelihood (HDL) (averaged over all simulations). The efficiency of SCORE enables computation of genetic correlations on the UK Biobank dataset, consisting of ≈300 K individuals and ≈500 K SNPs, in a few h (orders of magnitude faster than methods that analyze individual data, such as GCTA). Across 780 pairs of traits in 291,273 unrelated white British individuals in the UK Biobank, SCORE identifies significant genetic correlation between 200 additional pairs of traits over LDSC (beyond the 245 pairs identified by both).


Assuntos
Bancos de Espécimes Biológicos , Estudos de Associação Genética , Patrimônio Genético , Modelos Genéticos , Fenótipo , Algoritmos , Variação Genética , Humanos , Herança Multifatorial , Reprodutibilidade dos Testes , Reino Unido
15.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931049

RESUMO

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Cromatina/genética , Genômica , Humanos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
16.
Am J Hum Genet ; 109(7): 1286-1297, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716666

RESUMO

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , LDL-Colesterol , Expressão Gênica , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
17.
Am J Hum Genet ; 109(10): 1742-1760, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36152628

RESUMO

Complex traits are influenced by genetic risk factors, lifestyle, and environmental variables, so-called exposures. Some exposures, e.g., smoking or lipid levels, have common genetic modifiers identified in genome-wide association studies. Because measurements are often unfeasible, exposure polygenic risk scores (ExPRSs) offer an alternative to study the influence of exposures on various phenotypes. Here, we collected publicly available summary statistics for 28 exposures and applied four common PRS methods to generate ExPRSs in two large biobanks: the Michigan Genomics Initiative and the UK Biobank. We established ExPRSs for 27 exposures and demonstrated their applicability in phenome-wide association studies and as predictors for common chronic conditions. Especially the addition of multiple ExPRSs showed, for several chronic conditions, an improvement compared to prediction models that only included traditional, disease-focused PRSs. To facilitate follow-up studies, we share all ExPRS constructs and generated results via an online repository called ExPRSweb.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lipídeos , Herança Multifatorial/genética , Fatores de Risco
18.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37974509

RESUMO

Local genetic correlation evaluates the correlation of additive genetic effects between different traits across the same genetic variants at a genomic locus. It has been proven informative for understanding the genetic similarities of complex traits beyond that captured by global genetic correlation calculated across the whole genome. Several summary-statistics-based approaches have been developed for estimating local genetic correlation, including $\rho$-hess, SUPERGNOVA and LAVA. However, there has not been a comprehensive evaluation of these methods to offer practical guidelines on the choices of these methods. In this study, we conduct benchmark comparisons of the performance of these three methods through extensive simulation and real data analyses. We focus on two technical difficulties in estimating local genetic correlation: sample overlaps across traits and local linkage disequilibrium (LD) estimates when only the external reference panels are available. Our simulations suggest the likelihood of incorrectly identifying correlated regions and local correlation estimation accuracy are highly dependent on the estimation of the local LD matrix. These observations are corroborated by real data analyses of 31 complex traits. Overall, our findings illuminate the distinct results yielded by different methods applied in post-genome-wide association studies (post-GWAS) local correlation studies. We underscore the sensitivity of local genetic correlation estimates and inferences to the precision of local LD estimation. These observations accentuate the vital need for ongoing refinement in methodologies.


Assuntos
Benchmarking , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Fenótipo , Simulação por Computador , Desequilíbrio de Ligação
19.
Proc Natl Acad Sci U S A ; 119(13): e2116342119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35286217

RESUMO

SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.


Assuntos
Locomoção , Árvores , Adaptação Fisiológica/genética , Animais , Anuros , Evolução Biológica , Fenômenos Biomecânicos , Genômica , Humanos , Locomoção/genética
20.
BMC Genomics ; 25(1): 690, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003468

RESUMO

BACKGROUND: Heritability partitioning approaches estimate the contribution of different functional classes, such as coding or regulatory variants, to the genetic variance. This information allows a better understanding of the genetic architecture of complex traits, including complex diseases, but can also help improve the accuracy of genomic selection in livestock species. However, methods have mainly been tested on human genomic data, whereas livestock populations have specific characteristics, such as high levels of relatedness, small effective population size or long-range levels of linkage disequilibrium. RESULTS: Here, we used data from 14,762 cows, imputed at the whole-genome sequence level for 11,537,240 variants, to simulate traits in a typical livestock population and evaluate the accuracy of two state-of-the-art heritability partitioning methods, GREML and a Bayesian mixture model. In simulations where a single functional class had increased contribution to heritability, we observed that the estimators were unbiased but had low precision. When causal variants were enriched in variants with low (< 0.05) or high (> 0.20) minor allele frequency or low (below 1st quartile) or high (above 3rd quartile) linkage disequilibrium scores, it was necessary to partition the genetic variance into multiple classes defined on the basis of allele frequencies or LD scores to obtain unbiased results. When multiple functional classes had variable contributions to heritability, estimators showed higher levels of variation and confounding between certain categories was observed. In addition, estimators from small categories were particularly imprecise. However, the estimates and their ranking were still informative about the contribution of the classes. We also demonstrated that using methods that estimate the contribution of a single category at a time, a commonly used approach, results in an overestimation. Finally, we applied the methods to phenotypes for muscular development and height and estimated that, on average, variants in open chromatin regions had a higher contribution to the genetic variance (> 45%), while variants in coding regions had the strongest individual effects (> 25-fold enrichment on average). Conversely, variants in intergenic or intronic regions showed lower levels of enrichment (0.2 and 0.6-fold on average, respectively). CONCLUSIONS: Heritability partitioning approaches should be used cautiously in livestock populations, in particular for small categories. Two-component approaches that fit only one functional category at a time lead to biased estimators and should not be used.


Assuntos
Desequilíbrio de Ligação , Gado , Animais , Gado/genética , Bovinos/genética , Teorema de Bayes , Modelos Genéticos , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Variação Genética , Genômica/métodos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA