Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.474
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(8): 1531-1541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38935978

RESUMO

Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation for selection of ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Farmacorresistência Fúngica , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Azóis/farmacologia , Dinamarca/epidemiologia , Antifúngicos/farmacologia , Humanos , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Mutação , Fungicidas Industriais/farmacologia , Genótipo
2.
BMC Plant Biol ; 24(1): 275, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605329

RESUMO

Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.


Assuntos
Brassica , Compostagem , Ácidos Indolacéticos , Poluentes do Solo , Humanos , Níquel/metabolismo , Níquel/toxicidade , Brassica/metabolismo , Peróxido de Hidrogênio/metabolismo , Rizosfera , Clorofila A , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
3.
BMC Plant Biol ; 24(1): 533, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862876

RESUMO

Dragon fruit (Selenicereus undatus), known for its captivating appearance and remarkable nutritional profile, has garnered considerable attention in recent years. Despite its popularity, there's a dearth of research on optimal conditions for seed germination and early growth stages such as seedling shoot length, which are crucial for optimal crop yield. This study aims to bridge this gap by evaluating various growing media's performance on dragon fruit germination and early growth stages. Dragon fruit seeds were obtained from local markets in Pakistan and evaluated in five different growing media: cocopeat, peat moss, sand, vermiculite, and compost. Germination parameters were observed for 45 days, including seed germination percentage, mean germination time, and mean daily germination percentage, among others while early growth was monitored for 240 days. Statistical analysis was conducted using ANOVA and Tukey's HSD test. Significant differences were found among the growing media regarding germination percentage, mean germination time, and mean daily germination. Vermiculite exhibited the highest germination rate (93.33%), while compost showed the least (70%). Peat moss and sand media facilitated rapid germination, while compost showed slower rates. Stem length was significantly influenced by the growth media, with compost supporting the longest stems. Vermiculite emerged as the most effective medium for dragon fruit seed germination, while compost showed slower but steady growth. These findings provide valuable insights for optimizing dragon fruit cultivation, aiding commercial growers and enthusiasts in achieving higher yields and quality. Further research could explore additional factors influencing dragon fruit growth and development.


Assuntos
Meios de Cultura , Frutas , Germinação , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Plântula/crescimento & desenvolvimento , Cactaceae
4.
BMC Plant Biol ; 24(1): 538, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867179

RESUMO

BACKGROUND: The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS: In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS: Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.


Assuntos
Carvão Vegetal , Compostagem , Sementes , Solo , Trigonella , Trigonella/metabolismo , Trigonella/fisiologia , Trigonella/crescimento & desenvolvimento , Solo/química , Sementes/crescimento & desenvolvimento , Compostagem/métodos , Desidratação , Água/metabolismo , Salinidade
5.
Appl Environ Microbiol ; 90(5): e0205623, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38651929

RESUMO

Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.


Assuntos
Aspergillus fumigatus , Azóis , Farmacorresistência Fúngica , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica/genética , Azóis/farmacologia , Humanos , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estados Unidos , Microbiologia do Solo , Testes de Sensibilidade Microbiana , Fungicidas Industriais/farmacologia , Arachis/microbiologia
6.
Int Microbiol ; 27(2): 477-490, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37500936

RESUMO

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.


Assuntos
Cajanus , Cajanus/microbiologia , Ecossistema , Agricultura/métodos , Solo/química , Bactérias , Microbiologia do Solo
7.
Med Mycol ; 62(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38769604

RESUMO

Azole resistance in Aspergillus fumigatus (ARAf) is becoming a worldwide health threat due to increasing occurrence in the environment. However, environmental surveillance programs are not commonly in place and are lacking in Belgium. Since no data on the occurrence of ARAf and the presence of hotspots for the selection of azole resistance is available in Belgium, a first study on the prevalence of ARAf in the environment was conducted. A total of 232 air and compost or soil samples were taken from two composting facilities, and from horticultural and agricultural crops. The azole susceptibility pattern was determined using the EUCAST method (E. Def. 9.4), and the cyp51A gene and its promotor region were sequenced in A. fumigatus isolates with phenotypic azole resistance. Six pan-azole-resistant A. fumigatus isolates were identified, originating from compost and horticultural crops. Four isolates carried the TR34/L98H mutation, and one isolate carried the TR46/Y121F/T289A mutation. However, we did not observe any ARAf isolates from agricultural crops. In conclusion, this study reported the first TR34/L98H and TR46/Y121F/T289A mutation isolated from a composting facility and horticulture in Belgium. The implementation of standardization in environmental surveillance of A. fumigatus on a European level would be beneficial in order to identify hotspots.


The ubiquitous fungus Aspergillus fumigatus can cause serious invasive diseases in humans. Due to the extensive use of environmental azoles, an increase of clinical infections with azole-resistant A. fumigatus is seen. This pilot study aimed to estimate the prevalence of azole-resistant A. fumigatus in environmental reservoirs in Belgium.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Compostagem , Farmacorresistência Fúngica , Proteínas Fúngicas , Bélgica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Azóis/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Microbiologia do Solo , Mutação , Sistema Enzimático do Citocromo P-450/genética
8.
Environ Res ; 242: 117713, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000633

RESUMO

Urban green waste and food waste are often used as bulking agents to prepare home compost in combination with animal manure in urban horticulture and community gardening. Although it is known that antimicrobial resistance genes (ARGs) persist in home compost, their origins have not been determined. In addition, the factors contributing to ARGs persistence remain unclear. In this study, we aim to (i) characterize the changes in the microbiome and antimicrobial resistome during the composting process of home compost using metagenomics shotgun sequencing, (ii) identify the source of the ARGs persisted in home compost using SourceTracker, and (iii) elucidate the collective effect of compost microbiome and environmental factors, including the physicochemical properties and antibiotics concentration of home compost, in contributing to ARG persistence using Procrustes analysis, co-occurrence network analysis, variation partitioning analysis, and structural equation modeling. SourceTracker analysis indicated that urban green waste bulking agent was the major source of the persisting ARGs in home compost instead of animal manure. Procrustes analysis and co-occurrence network analysis revealed a strong association between microbiome and antimicrobial resistome. Variation partitioning analysis and structural equation modeling suggested that physicochemical properties shaped the antimicrobial resistome directly and indirectly by influencing the microbiome. Our results indicated that the persistence of ARGs in home compost might be due to the succession of microbial species from the urban green waste bulking agent, and the physicochemical properties might have defined the compost environment to shape the microbiome in the compost, thus, in turn, the persisting antimicrobial resistome.


Assuntos
Compostagem , Oxazolidinonas , Eliminação de Resíduos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Esterco/análise , Alimentos , Genes Bacterianos
9.
Environ Res ; 254: 119155, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754614

RESUMO

Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.

10.
Environ Res ; 245: 118034, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38147920

RESUMO

The primary objectives of this study were to explore the community-level succession of bacteria, fungi, and protists during cow-dung-driven composting and to elucidate the contribution of the biodiversity and core microbiota of key-stone microbial clusters on compost maturity. Herein, we used high-throughput sequencing, polytrophic ecological networks, and statistical models to visualize our hypothesis. The results showed significant differences in the richness, phylogenetic diversity, and community composition of bacteria, fungi, and eukaryotes at different composting stages. The ASV191 (Sphingobacterium), ASV2243 (Galibacter), ASV206 (Galibacter), and ASV62 (Firmicutes) were the core microbiota of key-stone bacterial clusters relating to compost maturity; And the ASV356 (Chytridiomycota), ASV470 (Basidiomycota), and ASV299 (Ciliophora) were the core microbiota of key-stone eukaryotic clusters relating to compost maturity based on the data of this study. Compared with the fungal taxa, the biodiversity and core microbiota of key-stone bacterial and eukaryotic clusters contributed more to compost maturity and could largely predict the change in the compost maturity. Structural equation modeling revealed that the biodiversity of total microbial communities and the biodiversity and core microbiota of the key-stone microbial clusters in the compost directly and indirectly regulated compost maturity by influencing nutrient availability (e.g., NH4+-N and NO3--N), hemicellulose, humic acid content, and fulvic acid content, respectively. These results contribute to our understanding of the biodiversity and core microbiota of key-stone microbial clusters in compost to improve the performance and efficiency of cow-dung-driven composting.


Assuntos
Compostagem , Microbiota , Animais , Bovinos , Solo , Filogenia , Bactérias/genética , Biodiversidade , Esterco/microbiologia
11.
Environ Res ; 252(Pt 1): 118604, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548254

RESUMO

The effective degradation of recalcitrant lignocellulose has emerged as a bottleneck for the humification of compost, and strategies are required to improve the efficiency of bagasse composting. Bioaugmentation is a promising method for promoting compost maturation and improving the quality of final compost. In this study, the bioaugmentation effects of microbial inoculants on humic acid (HA) formation during lignocellulosic composting were explored. In the inoculated group, the maximum temperature was increased to 72.5 °C, and the phenol-protein condensation and Maillard humification pathways were enhanced, thus increasing the HA content by 43.85%. After inoculation, the intensity of the microbial community interactions increased, particularly for fungi (1.4-fold). Macrogenomic analysis revealed that inoculation enriched thermophilic bacteria and lignocellulose-degrading fungi and increased the activity of carbohydrate-active enzymes and related metabolic functions, which effectively disrupted the recalcitrant structure of lignocellulose to achieve a high humification degree. Spearman correlation analysis indicated that Stappia of the Proteobacteria phylum, Ilumatobacter of the Actinomycetes phylum, and eleven genera of Ascomycota were the main HA producers. This study provides new ideas for bagasse treatment and recycling and realizing the comprehensive use of resources.


Assuntos
Celulose , Compostagem , Substâncias Húmicas , Esterco , Substâncias Húmicas/análise , Esterco/microbiologia , Celulose/metabolismo , Compostagem/métodos , Animais , Bovinos , Bactérias/metabolismo , Lignina/metabolismo , Fungos/metabolismo
12.
Environ Res ; 255: 119138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750999

RESUMO

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Assuntos
Irrigação Agrícola , Oryza , Solo , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Solo/química , Carbono/análise , Fósforo/análise , Água , Biomassa , Microbiologia do Solo
13.
Environ Res ; 255: 119188, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795950

RESUMO

The efficient use of livestock and poultry manure waste has become a global challenge, with microorganisms playing an important role. To investigate the impact of novel ammonifying microorganism cultures (NAMC) on microbial community dynamics and carbon and nitrogen metabolism, five treatments [5% (v/w) sterilized distilled water, Amm-1, Amm-2, Amm-3, and Amm-4] were applied to cow manure compost. Inoculation with NAMC improved the structure of bacterial and fungal communities, enriched the populations of the functional microorganisms, enhanced the role of specific microorganisms, and promoted the formation of tight modularity within the microbial network. Further functional predictions indicated a significant increase in both carbon metabolism (CMB) and nitrogen metabolism (NMB). During the thermophilic phase, inoculated NAMC treatments boosted carbon metabolism annotation by 10.55%-33.87% and nitrogen metabolism annotation by 26.69%-63.11. Structural equation modeling supported the NAMC-mediated enhancement of NMB and CMB. In conclusion, NAMC inoculation, particularly with Amm-4, enhanced the synergistic interaction between bacteria and fungi. This collaboration promoted enzymatic catabolic and synthetic processes, resultng in positive feedback loops with the endogenous microbial community. Understanding these mechanisms not only unravels how ammonifying microorganisms influence microbial communities but also paves the way for the development of the composting industry and global waste management practices.


Assuntos
Carbono , Compostagem , Esterco , Nitrogênio , Nitrogênio/metabolismo , Esterco/microbiologia , Animais , Carbono/metabolismo , Fungos/metabolismo , Microbiota , Bactérias/metabolismo , Microbiologia do Solo , Bovinos
14.
Appl Microbiol Biotechnol ; 108(1): 331, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734749

RESUMO

This study was conducted to investigate the effects of Ca(H2PO4)2 and MgSO4 on the bacterial community and nitrogen metabolism genes in the aerobic composting of pig manure. The experimental treatments were set up as control (C), 1% Ca(H2PO4)2 + 2% MgSO4 (CaPM1), and 1.5% Ca(H2PO4)2 + 3% MgSO4 (CaPM2), which were used at the end of composting for potting trials. The results showed that Ca(H2PO4)2 and MgSO4 played an excellent role in retaining nitrogen and increasing the alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents of the composts. Adding Ca(H2PO4)2 and MgSO4 changed the microbial community structure of the compost. The microorganisms associated with nitrogen retention were activated. The complexity of the microbial network was enhanced. Genetic prediction analysis showed that the addition of Ca(H2PO4)2 and MgSO4 reduced the accumulation of nitroso-nitrogen and the process of denitrification. At the same time, despite the reduction of genes related to nitrogen fixation, the conversion of ammonia to nitrogenous organic compounds was promoted and the stability of nitrogen was increased. Mantel test analysis showed that Ca(H2PO4)2 and MgSO4 can affect nitrogen transformation-related bacteria and thus indirectly affect nitrogen metabolism genes by influencing the temperature, pH, and organic matter (OM) of the compost and also directly affected nitrogen metabolism genes through PO43- and Mg2+. The pot experiment showed that composting with 1.5% Ca(H2PO4)2 + 3% MgSO4 produced the compost product that improved the growth yield and nutrient content of cilantro and increased the fertility of the soil. In conclusion, Ca(H2PO4)2 and MgSO4 reduces the loss of nitrogen from compost, activates nitrogen-related bacteria and genes in the thermophilic phase of composting, and improves the fertilizer efficiency of compost products. KEY POINTS: • Ca(H2PO4)2 and MgSO4 reduced the nitrogen loss and improved the compost effect • Activated nitrogen-related bacteria and altered nitrogen metabolism genes • Improved the yield and quality of cilantro and fertility of soil.


Assuntos
Bactérias , Compostagem , Sulfato de Magnésio , Esterco , Nitrogênio , Nitrogênio/metabolismo , Esterco/microbiologia , Animais , Suínos , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Sulfato de Magnésio/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Concentração de Íons de Hidrogênio , Temperatura , Potássio/metabolismo , Fosfatos de Cálcio/metabolismo , Fixação de Nitrogênio
15.
Ecotoxicol Environ Saf ; 274: 116194, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479312

RESUMO

Lead (Pb) is one of the most dreadful non-essential elements whose toxicity has been well reported worldwide due to its interference with the major plant functions and its overall yield. Bioremediation techniques comprising the application of beneficial microorganisms have gained attention in recent times owing to their ecofriendly nature. Addition of organic matter to soil has been reported to stimulate microbial activities. Compost application improves soil structure and binds toxic contaminants due to its larger surface area and presence of functional groups. Furthermore, it stimulates soil microbial activities by acting as C-source. So, in current study, we investigated the individual and synergistic potential of two lead (Pb)-tolerant Pseudomonas strains alongwith compost (1% w/w) in sustaining sunflower growth under Pb contaminated soil conditions. Lead chloride (PbCl2) salt was used for raising desired Pb concentration (500 mg kg-1). Results revealed that Pb stress drastically affected all the measured attributes of sunflower plant, however joint application of rhizobacteria and compost counteracted these adverse effects. Among them, co-application of str-1 and compost proved to be significantly better than str-2, as its inoculation significantly improved shoot and root lengths (64 and 76%), leaf area and leaves plant-1 (95 and 166%), 100-achene weight (200%), no. of flowers plant-1 (138%), chl 'a', 'b' and carotenoid (86, 159 and 33%) contents in sunflower as compared to control treatments. Furthermore, inoculation of Pseudomonas fluorescens along with compost increased the NPK in achene (139, 200 and 165%), flavonoid and phenolic contents (258 and 185%) along with transpiration and photosynthetic rates (54 and 72%) in leaves as compared to control treatment under Pb contamination. In addition, Pb entry to roots, shoots and achene were significantly suppressed under by 87, 90 and 91% respectively due to integrated application of compost and str-1 as evident by maximum Pb-immobilization efficiency (97%) obtained in this treatment. Similarly, bioconcentration factors for roots, shoots and achene were found to be 0.58, 0.18 and 0.0055 with associated translocation factor (0.30), which also revealed phytostabilization of Pb under combined application of PGPR and compost. Since, phytoremediation of heavy metals under current scenario of increasing global population is inevitable, results of the current study concluded that tolerant PGPR species along with organic amendments such as compost can inhibit Pb uptake by sunflower and confer Pb tolerance via improved nutrient uptake, physiology, antioxidative defense and gas exchange.


Assuntos
Compostagem , Helianthus , Poluentes do Solo , Antioxidantes/metabolismo , Helianthus/metabolismo , Pseudomonas/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Solo/química , Nutrientes , Poluentes do Solo/análise
16.
Ecotoxicol Environ Saf ; 270: 115884, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154152

RESUMO

Appropriate management of agricultural organic waste (AOW) presents a significant obstacle in the endeavor to attain sustainable agricultural development. The proper management of AOW is a necessity for sustainable agricultural development. This can be done skillfully by incorporating microbial agents in the composting procedure. In this study, we isolated relevant bacteria strains from tomato straw AOW, which demonstrated efficient degradation of lignocellulose without any antagonistic effects in them. These strains were then combined to create a composite microbial agent called Zyco Shield (ZS). The performance of ZS was compared with a commercially effective microorganism (EM) and a control CK. The results indicate that the ZS treatment significantly prolonged the elevated temperature phase of the tomato straw pile, showing considerable degradation of lignocellulosic material. This substantial degradation did not happen in the EM and CK treatments. Moreover, there was a temperature rise of 4-6 â„ƒ in 2 days of thermophilic phase, which was not the case in the EM and CK treatments. Furthermore, the inoculation of ZS substantially enhanced the degradation of organic waste derived from tomato straw. This method increased the nutrient content of the resulting compost and elevated the enzymatic activity of lignocellulose-degrading enzymes, while reducing the urease enzyme activity within the pile. The concentrations of NH4+-N and NO3--N showed increases of (2.13% and 47.51%), (14.81% and 32.17%) respectively, which is again very different from the results of the EM and CK treatments. To some extent, the alterations observed in the microbial community and the abundance of functional microorganisms provide indirect evidence supporting the fact that the addition of ZS microbial agent facilitates the composting process of tomato straw. Moreover, we confirmed the degradation process of tomato straw through X-ray diffraction, Fourier infrared spectroscopy, and by scanning electron microscopy to analyze the role of ZS microbial inoculum composting. Consequently, reinoculation compost strains improves agricultural waste composting efficiency and enhances product quality.


Assuntos
Compostagem , Microbiota , Solanum lycopersicum , Agricultura , Bactérias/metabolismo , Solo/química , Nitrogênio/análise
17.
Plant Dis ; 108(3): 666-670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37807093

RESUMO

Green mold (Trichoderma aggressivum) is an invasive disease of commercial mushrooms introduced into the United States from Europe that now has spread to commercial mushrooms throughout North America. We examined potential sources of invasive green mold inoculum and the association with different compost filling technologies on a large actively producing commercial mushroom farm. Green mold foci were sampled bed by bed, which generated 20,906 data points. Logistic regression was used to determine treatment differences. Mechanical filling of compost into the beds reduced green mold incidence over hand filling, apparently due to the reduced incidence of worker contact with the floor and between beds. Lower growing beds located closer to the floor had a higher incidence of green mold for both mechanical and hand-filled beds. We conclude that mechanical filling and generally reducing contact with the floor and between beds will reduce spread of green mold in commercial mushroom production.


Assuntos
Agaricus , Compostagem , Trichoderma , Estados Unidos , Incidência , Europa (Continente)
18.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000980

RESUMO

Exposure to high concentrations of odours can result in health effects associated with direct health risks and irritation from nuisance. This investigation aimed to correlate aspects of the waste composting process with the emission levels of malodourous compounds. An essential optimisation criterion is the reduction of negative environmental impacts, particularly odour emissions. This study characterises odour concentration variations across various technological variants over different weeks of the composting process. A secondary objective is evaluating the efficacy of these variants, which differ in inoculation substances and compost heap composition. Olfactometric analyses were conducted using portable field olfactometers, enabling precise dilutions by mixing contaminated and purified air. The primary aim was to examine the correlation between selected odour parameters, determined via sensory analysis, and ammonia concentration during different composting weeks. Ammonia levels were measured using an RAE electrochemical sensor. Research shows that odour concentration is a significant indicator of compost maturity. In situ, olfactometric testing can effectively monitor the aerobic stabilisation process alone or with other methods. The most effective technological solution was identified by combining olfactometric and ammonia measurements and monitoring composting parameters, ensuring minimal odour emissions and the safety of employees and nearby residents.


Assuntos
Amônia , Compostagem , Odorantes , Olfatometria , Odorantes/análise , Amônia/análise , Compostagem/métodos , Olfatometria/métodos , Humanos , Monitoramento Ambiental/métodos , Solo/química
19.
J Environ Manage ; 354: 120337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417357

RESUMO

China, being a major agricultural nation, employs aerobic composting as an efficient approach to handle agricultural solid waste. Nevertheless, the composting process is often accompanied by greenhouse gas emissions, which are known contributors to global warming. Therefore, it is urgent to control the formation and emission of greenhouse gases from composting. This study provides a comprehensive analysis of the mechanisms underlying the production of nitrous oxide, methane, and carbon dioxide during the composting process of agricultural wastes. Additionally, it proposes an overview of the variables that affect greenhouse gas emissions, including the types of agricultural wastes (straw, livestock manure), the specifications for compost (pile size, aeration). The key factors of greenhouse gas emissions during composting process like physicochemical parameters, additives, and specific composting techniques (reuse of mature compost products, ultra-high-temperature composting, and electric-field-assisted composting) are summarized. Finally, it suggests directions and perspectives for future research. This study establishes a theoretical foundation for achieving carbon neutrality and promoting environmentally-friendly composting practices.


Assuntos
Compostagem , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Agricultura , Dióxido de Carbono/análise , Aquecimento Global , Metano/análise , Óxido Nitroso/análise , Esterco/análise , Solo
20.
J Environ Manage ; 356: 120622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513580

RESUMO

Insect farming has gained popularity as a resource-efficient and eco-friendly method for managing organic wastes by converting them into high-quality protein, fat, and frass. Insect frass is a powerful organic fertilizer that enriches the soil with essential plant nutrients and enhances plant defense mechanisms through chitin stimulation. Given the importance of frass commercialization for many insect farmers and the use of increasingly diverse organic wastes as insect feedstocks, there is a need for legal guidelines to enable clean production practices. The recent introduction of a legal definition for frass and heat treatment requirements by the EU commission marks a significant step towards standardizing its quality; however, little is known about the processes shaping its nutritional profiles and contributing to its maturation. Our study addresses key knowledge gaps in frass composition and production practices. Here, we analyzed the physicochemical, plant-nutritional, and microbiological properties of black soldier fly, yellow mealworm, and Jamaican field cricket frass from mass-rearing operations and assessed the impact of hygienizing heat treatment on fertilizer properties and frass microbiota. The results showed that frass properties varied significantly across insect species, revealing concentrations of plant-available nutrients as high as 7000 µg NH4+-N, 150 µg NO2-NO3--N, and 20 mg available P per g of total solids. Heat treatment reduced microbial activity, biomass, and viable counts of pathogenic Escherichia coli and Salmonella spp. In terms of frass microbiome composition, alpha diversity showed no significant differences between fresh and heat-treated frass samples; however, significant differences in microbial community composition were observed across the three insect species. Despite heat treatment, soil application of frass reactivated and boosted soil microbial activity, inducing up to a 25-fold increase in microbial respiration, suggesting no long-term detrimental effects on microorganisms. These findings not only enhance our understanding of insect frass as a nutrient-rich organic fertilizer but also have implications for regulatory frameworks, underscoring its promising potential for soil health and nutrient cycling. However, it is important to recognize the primary nature of this research, conducted at laboratory scale and over a short term. Future studies should aim to validate these findings in agricultural settings and explore additional factors influencing frass properties and its (long-term) interaction with soil ecosystems.


Assuntos
Fertilizantes , Solo , Animais , Solo/química , Fertilizantes/análise , Ecossistema , Temperatura Alta , Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA