Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-17, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899590

RESUMO

Camellia oleifera (C. oleifera) is a woody oil plant with a good reputation of 'Oriental Olive Oil' in China. The national understanding of the health-care benefits of Camellia oil are already widespread, but the production of C. oleifera fruit has not been achieved large-scale industrialisation. In this review, we focus on the properties and commercial value of its natural products, and processing technology, performance characterisation, and novel modification strategies of its processed products. In addition, we briefly summarised the research progress of breeding and put forward the comprehensive utilisation of C. oleifera fruit based on the tandem of extraction and processing. This review might attract more researchers to make profound study regarding it as an alternative of olive oil.

2.
Waste Manag ; 134: 1-10, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390974

RESUMO

The co-incorporation of rice straw (RS) and milk vetch (MV) into paddy fields has been increasingly applied as a sustainable farming practice in southern China. Our previous study revealed the contribution of bacteria to the co-decomposition of the RS and MV mixture, although additional underlying factors driving the co-decomposition process need to be clarified. The present study further determined the succession of fungal communities and enzyme activity in the co-decomposition process of the RS and MV mixture. The results showed that non-additive synergistic effects on biomass loss were observed in 55.6% of the sampled RS and MV mixture during the co-decomposition process, stimulating mixture decomposition. Overall fungal abundance was 19.6-30.6% higher in the RS and MV mixture throughout the study than in the single residue. Fungal diversity and community structure were mainly affected by the sampling date rather than the type of residue. Specifically, mixing RS and MV significantly increased the abundance of Peziza sp. and Reticulascus tulasneorum (lignocellulose- and lignin-decomposing fungi) and exhibited higher activities of C- and N-related hydrolases than monospecific residues. Random forest (RF) models showed that bacteria contributed more to the residue decomposition and activities of C-related hydrolases, N-related hydrolases, and oxidases than fungi. However, both RF and partial least squares path models revealed that fungal abundance and community structure directly or indirectly affected the residue decomposition rate. These findings showed that mixing RS and MV could stimulate their decomposition by enhancing C-related hydrolase activity and Peziza sp. and Reticulascus tulasneorum abundance.


Assuntos
Astrágalo , Micobioma , Oryza , Agricultura , Ascomicetos , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA