Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.547
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364788

RESUMO

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Assuntos
Bainha de Mielina , Retroelementos , Animais , Expressão Gênica , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Retroelementos/genética , RNA/metabolismo , Peixe-Zebra/genética , Anuros
2.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537136

RESUMO

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Assuntos
COVID-19/epidemiologia , Evolução Molecular , Mutação , Pandemias , SARS-CoV-2/genética , Sequência de Aminoácidos/genética , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Códon/genética , Genes Virais , Deriva Genética , Adaptação ao Hospedeiro/genética , Humanos , Evasão da Resposta Imune , Filogenia , Saúde Pública
3.
Cell ; 173(1): 11-19, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29570991

RESUMO

The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic ß-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Biologia Computacional , Descoberta de Drogas , Humanos , Células Secretoras de Insulina/citologia , Proteínas/química , Proteínas/metabolismo
4.
Mol Cell ; 84(5): 867-882.e5, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38295804

RESUMO

The structural maintenance of chromosomes (SMC) protein complexes-cohesin, condensin, and the Smc5/6 complex (Smc5/6)-are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6's recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 associates with transcription-induced positively supercoiled DNA at cohesin-dependent loop boundaries on budding yeast (Saccharomyces cerevisiae) chromosomes. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes and efficiently initiate loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Super-Helicoidal/genética , Coesinas , DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromossomos/metabolismo
5.
Mol Cell ; 83(7): 1153-1164.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917983

RESUMO

Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
6.
Trends Biochem Sci ; 49(8): 654-657, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777701

RESUMO

Designers' work processes are shaped by a four-phase 'discover, define, develop, and deliver' model that alternates between divergent and convergent thinking. We suggest consideration of this conceptual scaffold in 'design sprint' workshops for graduate students in the life sciences and in design to promote creativity, interdisciplinary collaboration, and knowledge cocreation.


Assuntos
Disciplinas das Ciências Biológicas , Criatividade , Humanos
7.
Trends Biochem Sci ; 49(1): 79-92, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036336

RESUMO

Humans and other mammals inhabit hypoxic high-altitude locales. In many of these species, genes under positive selection include ones in the Hypoxia Inducible Factor (HIF) pathway. One is PHD2 (EGLN1), which encodes for a key oxygen sensor. Another is HIF2A (EPAS1), which encodes for a PHD2-regulated transcription factor. Recent studies have provided insights into mechanisms for these high-altitude alleles. These studies have (i) shown that selection can occur on nonconserved, unstructured regions of proteins, (ii) revealed that high altitude-associated amino acid substitutions can have differential effects on protein-protein interactions, (iii) provided evidence for convergent evolution by different molecular mechanisms, and (iv) suggested that mutations in different genes can complement one another to produce a set of adaptive phenotypes.


Assuntos
Adaptação Fisiológica , Altitude , Humanos , Animais , Adaptação Fisiológica/genética , Hipóxia/genética , Fenótipo , Regulação da Expressão Gênica , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mamíferos/genética
8.
Immunity ; 48(1): 174-184.e9, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343437

RESUMO

Human B cell antigen-receptor (BCR) repertoires reflect repeated exposures to evolving influenza viruses; new exposures update the previously generated B cell memory (Bmem) population. Despite structural similarity of hemagglutinins (HAs) from the two groups of influenza A viruses, cross-reacting antibodies (Abs) are uncommon. We analyzed Bmem compartments in three unrelated, adult donors and found frequent cross-group BCRs, both HA-head directed and non-head directed. Members of a clonal lineage from one donor had a BCR structure similar to that of a previously described Ab, encoded by different gene segments. Comparison showed that both Abs contacted the HA receptor-binding site through long heavy-chain third complementarity determining regions. Affinities of the clonal-lineage BCRs for historical influenza-virus HAs from both group 1 and group 2 viruses suggested that serial responses to seasonal influenza exposures had elicited the lineage and driven affinity maturation. We propose that appropriate immunization regimens might elicit a comparably broad response.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vírus da Influenza A/imunologia , Adulto , Técnicas de Cultura de Células , Reações Cruzadas/imunologia , Feminino , Citometria de Fluxo , Hemaglutininas Virais/imunologia , Humanos , Interferometria , Masculino
9.
Proc Natl Acad Sci U S A ; 121(10): e2318542121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408230

RESUMO

Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.


Assuntos
Dióxido de Carbono , Clorófitas , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Proteômica , Plastídeos/metabolismo , Fotossíntese/genética , Clorófitas/genética , Clorófitas/metabolismo , Plantas/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(11): e2313354121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457520

RESUMO

Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.


Assuntos
Domesticação , Saccharomycetales , Humanos , Filogenia , Saccharomycetales/genética , Metaboloma , Saccharomyces cerevisiae/genética
11.
Trends Biochem Sci ; 47(7): 620-630, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35351361

RESUMO

Dedicated loader proteins play essential roles in bacterial DNA replication by opening ring-shaped DnaB-family helicases and chaperoning single-stranded (ss)DNA into a central motor chamber as a prelude to DNA unwinding. Although unrelated in sequence, the Escherichia coli DnaC and bacteriophage λ P loaders feature a similar overall architecture: a globular domain linked to an extended lasso/grappling hook element, located at their N and C termini, respectively. Both loaders remodel a closed DnaB ring into nearly identical right-handed open conformations. The sole element shared by the loaders is a single alpha helix, which binds to the same site on the helicase. Physical features of the loaders establish that DnaC and λ P evolved independently to converge, through molecular mimicry, on a common helicase-opening mechanism.


Assuntos
Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , DNA de Cadeia Simples , DnaB Helicases/química , DnaB Helicases/genética , DnaB Helicases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química
12.
Semin Cell Dev Biol ; 165: 1-12, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079455

RESUMO

In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.

13.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345070

RESUMO

Mediolateral cell intercalation is a morphogenetic strategy used throughout animal development to reshape tissues. Dorsal intercalation in the Caenorhabditis elegans embryo involves the mediolateral intercalation of two rows of dorsal epidermal cells to create a single row that straddles the dorsal midline, and thus is a simple model to study cell intercalation. Polarized protrusive activity during dorsal intercalation requires the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, but how these GTPases are regulated during intercalation has not been thoroughly investigated. In this study, we characterized the role of the Rac-specific guanine nucleotide exchange factor (GEF) TIAM-1 in regulating actin-based protrusive dynamics during dorsal intercalation. We found that TIAM-1 can promote formation of the main medial lamellipodial protrusion extended by intercalating cells through its canonical GEF function, whereas its N-terminal domains function to negatively regulate the generation of ectopic filiform protrusions around the periphery of intercalating cells. We also show that the guidance receptor UNC-5 inhibits these ectopic filiform protrusions in dorsal epidermal cells and that this effect is in part mediated via TIAM-1. These results expand the network of proteins that regulate basolateral protrusive activity during directed rearrangement of epithelial cells in animal embryos.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Animais , Actinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores de Superfície Celular , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo
14.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390294

RESUMO

Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.


Assuntos
Defeitos do Tubo Neural , Camundongos , Animais , Defeitos do Tubo Neural/metabolismo , Tubo Neural/metabolismo , Neurulação , Camadas Germinativas/metabolismo , Polaridade Celular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(15): e2110866120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018201

RESUMO

Addressing climate change and biodiversity loss will be the defining ecological, political, and humanitarian challenge of our time. Alarmingly, policymakers face a narrowing window of opportunity to prevent the worst impacts, necessitating complex decisions about which land to set aside for biodiversity preservation. Yet, our ability to make these decisions is hindered by our limited capacity to predict how species will respond to synergistic drivers of extinction risk. We argue that a rapid integration of biogeography and behavioral ecology can meet these challenges because of the distinct, yet complementary levels of biological organization they address, scaling from individuals to populations, and from species and communities to continental biotas. This union of disciplines will advance efforts to predict biodiversity's responses to climate change and habitat loss through a deeper understanding of how biotic interactions and other behaviors modulate extinction risk, and how responses of individuals and populations impact the communities in which they are embedded. Fostering a rapid mobilization of expertise across behavioral ecology and biogeography is a critical step toward slowing biodiversity loss.


Assuntos
Biodiversidade , Ecossistema , Humanos , Biota , Mudança Climática , Ecologia
16.
Proc Natl Acad Sci U S A ; 120(35): e2305050120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603760

RESUMO

Primary productivity response to climatic drivers varies temporally, indicating state-dependent interactions between climate and productivity. Previous studies primarily employed equation-based approaches to clarify this relationship, ignoring the state-dependent nature of ecological dynamics. Here, using 40 y of climate and productivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlinear time-series analysis to reveal sensitivity patterns of productivity to climate change and variability and clarify underlying mechanisms. We showed that productivity responded positively to annual precipitation in mesic regions but negatively in arid regions, with the opposite pattern observed for annual mean temperature. Furthermore, productivity responded negatively to decreasing annual aridity that integrated precipitation and temperature across Mongolia. Productivity responded negatively to interannual variability in precipitation and aridity in mesic regions but positively in arid regions. Overall, interannual temperature variability enhanced productivity. These response patterns are largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate effects modify annual productivity responses to annual climate conditions. Notably, our results suggest that the sensitivity of annual productivity to increasing annual precipitation and decreasing annual aridity can even be negative when the negative time-delayed effects of annual precipitation and aridity on productivity prevail across time. Second, the proportion of plant species resistant to water and temperature stresses at a site determines the sensitivity of productivity to climate variability. Thus, we highlight the importance of nonlinear, state-dependent sensitivity of productivity to climate change and variability, accurately forecasting potential biosphere feedback to the climate system.

17.
Proc Natl Acad Sci U S A ; 120(34): e2302370120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590410

RESUMO

Long-lived parasites evade host immunity through highly evolved molecular strategies. The murine intestinal helminth, Heligmosomoides polygyrus, down-modulates the host immune system through release of an immunosuppressive TGF-ß mimic, TGM1, which is a divergent member of the CCP (Sushi) protein family. TGM1 comprises 5 domains, of which domains 1-3 (D1/2/3) bind mammalian TGF-ß receptors, acting on T cells to induce Foxp3+ regulatory T cells; however, the roles of domains 4 and 5 (D4/5) remain unknown. We noted that truncated TGM1, lacking D4/5, showed reduced potency. Combination of D1/2/3 and D4/5 as separate proteins did not alter potency, suggesting that a physical linkage is required and that these domains do not deliver an independent signal. Coprecipitation from cells treated with biotinylated D4/5, followed by mass spectrometry, identified the cell surface protein CD44 as a coreceptor for TGM1. Both full-length and D4/5 bound strongly to a range of primary cells and cell lines, to a greater degree than D1/2/3 alone, although some cell lines did not respond to TGM1. Ectopic expression of CD44 in nonresponding cells conferred responsiveness, while genetic depletion of CD44 abolished enhancement by D4/5 and ablated the ability of full-length TGM1 to bind to cell surfaces. Moreover, CD44-deficient T cells showed attenuated induction of Foxp3 by full-length TGM1, to levels similar to those induced by D1/2/3. Hence, a parasite protein known to bind two host cytokine receptor subunits has evolved a third receptor specificity, which serves to raise the avidity and cell type-specific potency of TGF-ß signaling in mammalian cells.


Assuntos
Parasitos , Animais , Camundongos , Linfócitos T Reguladores , Transdução de Sinais , Fator de Crescimento Transformador beta , Fatores de Transcrição Forkhead , Mamíferos
18.
Proc Natl Acad Sci U S A ; 120(4): e2207105120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649409

RESUMO

Two species of rice have been independently domesticated from different ancestral wild species in Asia and Africa. Comparison of mutations that underlie phenotypic and physiological alterations associated with domestication traits in these species gives insights into the domestication history of rice in both regions. Asian cultivated rice, Oryza sativa, and African cultivated rice, Oryza glaberrima, have been modified and improved for common traits beneficial for humans, including erect plant architecture, nonshattering seeds, nonpigmented pericarp, and lack of awns. Independent mutations in orthologous genes associated with these traits have been documented in the two cultivated species. Contrary to this prevailing model, selection for awnlessness targeted different genes in O. sativa and O. glaberrima. We identify Regulator of Awn Elongation 3 (RAE3) a gene that encodes an E3 ubiquitin ligase and is responsible for the awnless phenotype only in O. glaberrima. A 48-bp deletion may disrupt the substrate recognition domain in RAE3 and diminish awn elongation. Sequencing analysis demonstrated low nucleotide diversity in a ~600-kb region around the derived rae3 allele on chromosome 6 in O. glaberrima compared with its wild progenitor. Identification of RAE3 sheds light on the molecular mechanism underlying awn development and provides an example of how selection on different genes can confer the same domestication phenotype in Asian and African rice.


Assuntos
Oryza , Humanos , Oryza/genética , Domesticação , Ubiquitina-Proteína Ligases/genética , Mutação , Sementes/genética
19.
J Biol Chem ; 300(5): 107218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522515

RESUMO

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.


Assuntos
Tombusvirus , Evolução Molecular , Fases de Leitura Aberta , Dobramento de Proteína , Estrutura Secundária de Proteína , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Homologia de Sequência de Aminoácidos , Modelos Psicológicos , Estrutura Terciária de Proteína
20.
Plant J ; 118(3): 753-765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38217489

RESUMO

Specific ecological conditions in the high mountain environment exert a selective pressure that often leads to convergent trait evolution. Reticulations induced by incomplete lineage sorting and introgression can lead to discordant trait patterns among gene and species trees (hemiplasy/xenoplasy), providing a false illusion that the traits under study are homoplastic. Using phylogenetic species networks, we explored the effect of gene exchange on trait evolution in Soldanella, a genus profoundly influenced by historical introgression. At least three features evolved independently multiple times: the single-flowered dwarf phenotype, dysploid cytotype, and ecological generalism. The present analyses also indicated that the recurring occurrence of stoloniferous growth might have been prompted by an introgression event between an ancestral lineage and a still extant species, although its emergence via convergent evolution cannot be completely ruled out. Phylogenetic regression suggested that the independent evolution of larger genomes in snowbells is most likely a result of the interplay between hybridization events of dysploid and euploid taxa and hostile environments at the range margins of the genus. The emergence of key intrinsic and extrinsic traits in snowbells has been significantly impacted not only by convergent evolution but also by historical and recent introgression events.


Assuntos
Evolução Biológica , Filogenia , Fenótipo , Genoma de Planta/genética , Hibridização Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA