Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.026
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(10): 2536-2556.e30, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653237

RESUMO

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.


Assuntos
Cisteína , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cisteína/metabolismo , Cisteína/química , Ligantes , Melanoma/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Oxirredução , Transdução de Sinais , Fatores de Transcrição SOXE/química , Fatores de Transcrição SOXE/metabolismo
2.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483372

RESUMO

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Assuntos
Química Click , Imagem Óptica , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Mamíferos , Camundongos , Imagem Óptica/métodos
3.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730809

RESUMO

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Assuntos
Cisteína/metabolismo , Ligantes , Linfócitos T/metabolismo , Acetamidas/química , Acetamidas/farmacologia , Acrilamidas/química , Acrilamidas/farmacologia , Células Cultivadas , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/metabolismo
4.
Cell ; 182(1): 85-97.e16, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579975

RESUMO

Small molecule covalent drugs provide desirable therapeutic properties over noncovalent ones for treating challenging diseases. The potential of covalent protein drugs, however, remains unexplored due to protein's inability to bind targets covalently. We report a proximity-enabled reactive therapeutics (PERx) approach to generate covalent protein drugs. Through genetic code expansion, a latent bioreactive amino acid fluorosulfate-L-tyrosine (FSY) was incorporated into human programmed cell death protein-1 (PD-1). Only when PD-1 interacts with PD-L1 did the FSY react with a proximal histidine of PD-L1 selectively, enabling irreversible binding of PD-1 to only PD-L1 in vitro and in vivo. When administrated in immune-humanized mice, the covalent PD-1(FSY) exhibited strikingly more potent antitumor effect over the noncovalent wild-type PD-1, attaining therapeutic efficacy equivalent or superior to anti-PD-L1 antibody. PERx should provide a general platform technology for converting various interacting proteins into covalent binders, achieving specific covalent protein targeting for biological studies and therapeutic capability unattainable with conventional noncovalent protein drugs.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Proliferação de Células , Células Dendríticas/metabolismo , Humanos , Cinética , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Monócitos/metabolismo , Fenótipo , Proteínas/química , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Annu Rev Biochem ; 88: 365-381, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30633551

RESUMO

Covalent inhibitors are widely used in drug discovery and chemical biology. Although covalent inhibitors are frequently designed to react with noncatalytic cysteines, many ligand binding sites lack an accessible cysteine. Here, we review recent advances in the chemical biology of lysine-targeted covalent inhibitors and chemoproteomic probes. By analyzing crystal structures of proteins bound to common metabolites and enzyme cofactors, we identify a large set of mostly unexplored lysines that are potentially targetable with covalent inhibitors. In addition, we describe mass spectrometry-based approaches for determining proteome-wide lysine ligandability and lysine-reactive chemoproteomic probes for assessing drug-target engagement. Finally, we discuss the design of amine-reactive inhibitors that form reversible covalent bonds with their protein targets.


Assuntos
Descoberta de Drogas/métodos , Lisina/química , Proteoma/metabolismo , Ligantes , Espectrometria de Massas , Ligação Proteica , Proteoma/química , Ácidos Sulfínicos
6.
Cell ; 171(3): 696-709.e23, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28965760

RESUMO

The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Proteoma/análise , Transcriptoma , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisteína/metabolismo , Receptor Nuclear Órfão DAX-1/metabolismo , Redes Reguladoras de Genes , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Neoplasias Pulmonares/metabolismo
7.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
8.
Proc Natl Acad Sci U S A ; 121(5): e2320237121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252821

RESUMO

Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.

9.
Proc Natl Acad Sci U S A ; 121(22): e2319029121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781214

RESUMO

The HapImmuneTM platform exploits covalent inhibitors as haptens for creating major histocompatibility complex (MHC)-presented tumor-specific neoantigens by design, combining targeted therapies with immunotherapy for the treatment of drug-resistant cancers. A HapImmune antibody, R023, recognizes multiple sotorasib-conjugated KRAS(G12C) peptides presented by different human leukocyte antigens (HLAs). This high specificity to sotorasib, coupled with broad HLA-binding capability, enables such antibodies, when reformatted as T cell engagers, to potently and selectively kill sotorasib-resistant KRAS(G12C) cancer cells expressing different HLAs upon sotorasib treatment. The loosening of HLA restriction could increase the patient population that can benefit from this therapeutic approach. To understand the molecular basis for its unconventional binding capability, we used single-particle cryogenic electron microscopy to determine the structures of R023 bound to multiple sotorasib-peptide conjugates presented by different HLAs. R023 forms a pocket for sotorasib between the VH and VL domains, binds HLAs in an unconventional, angled way, with VL making most contacts with them, and makes few contacts with the peptide moieties. This binding mode enables the antibody to accommodate different hapten-peptide conjugates and to adjust its conformation to different HLAs presenting hapten-peptides. Deep mutational scanning validated the structures and revealed distinct levels of mutation tolerance by sotorasib- and HLA-binding residues. Together, our structural information and sequence landscape analysis reveal key features for achieving MHC-restricted recognition of multiple hapten-peptide antigens, which will inform the development of next-generation therapeutic antibodies.


Assuntos
Peptídeos , Humanos , Peptídeos/imunologia , Peptídeos/química , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Haptenos/imunologia , Ligação Proteica , Microscopia Crioeletrônica
10.
Proc Natl Acad Sci U S A ; 121(8): e2316716121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349874

RESUMO

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.

11.
Proc Natl Acad Sci U S A ; 121(13): e2315407121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502699

RESUMO

Organic electrodes mainly consisting of C, O, H, and N are promising candidates for advanced batteries. However, the sluggish ionic and electronic conductivity limit the full play of their high theoretical capacities. Here, we integrate the idea of metal-support interaction in single-atom catalysts with π-d hybridization into the design of organic electrode materials for the applications of lithium (LIBs) and potassium-ion batteries (PIBs). Several types of transition metal single atoms (e.g., Co, Ni, Fe) with π-d hybridization are incorporated into the semiconducting covalent organic framework (COF) composite. Single atoms favorably modify the energy band structure and improve the electronic conductivity of COF. More importantly, the electronic interaction between single atoms and COF adjusts the binding affinity and modifies ion traffic between Li/K ions and the active organic units of COFs as evidenced by extensive in situ and ex situ characterizations and theoretical calculations. The corresponding LIB achieves a high reversible capacity of 1,023.0 mA h g-1 after 100 cycles at 100 mA g-1 and 501.1 mA h g-1 after 500 cycles at 1,000 mA g-1. The corresponding PIB delivers a high reversible capacity of 449.0 mA h g-1 at 100 mA g-1 after 150 cycles and stably cycled over 500 cycles at 1,000 mA g-1. This work provides a promising route to engineering organic electrodes.

12.
Proc Natl Acad Sci U S A ; 120(15): e2208676120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014856

RESUMO

Two-dimensional (2D) covalent-organic frameworks (COFs) with a well-defined and tunable periodic porous skeleton are emerging candidates for lightweight and strong 2D polymeric materials. It remains challenging, however, to retain the superior mechanical properties of monolayer COFs in a multilayer stack. Here, we successfully demonstrated a precise layer control in synthesizing atomically thin COFs, enabling a systematic study of layer-dependent mechanical properties of 2D COFs with two different interlayer interactions. It was shown that the methoxy groups in COFTAPB-DMTP provided enhanced interlayer interactions, leading to layer-independent mechanical properties. In sharp contrast, mechanical properties of COFTAPB-PDA decreased significantly as the layer number increased. We attributed these results to higher energy barriers against interlayer sliding due to the presence of interlayer hydrogen bonds and possible mechanical interlocking in COFTAPB-DMTP, as revealed by density functional theory calculations.

13.
Proc Natl Acad Sci U S A ; 120(9): e2217081120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812199

RESUMO

Carbon capture is one of the essential low-carbon technologies required to achieve societal climate goals at the lowest cost. Covalent organic frameworks (COFs) are promising adsorbents for CO2 capture because of their well-defined porosity, large surface area, and high stability. Current COF-based CO2 capture is mainly based on a physisorption mechanism, exhibiting smooth and reversible sorption isotherms. In the present study, we report unusual CO2 sorption isotherms featuring one or more tunable hysteresis steps with metal ion (Fe3+, Cr3+, or In3+)-doped Schiff-base two-dimensional (2D) COFs (Py-1P, Py-TT, and Py-Py) as adsorbents. Synchrotron X-ray diffraction, spectroscopic and computational studies indicate that the sharp adsorption steps in the isotherm originate from the insertion of CO2 between the metal ion and the N atom of the imine bond on the inner pore surface of the COFs as the CO2 pressure reaches threshold values. As a result, the CO2 adsorption capacity of the ion-doped Py-1P COF is increased by 89.5% compared with that of the undoped Py-1P COF. This CO2 sorption mechanism provides an efficient and straightforward approach to enhancing the CO2 capture capacity of COF-based adsorbents, yielding insights into developing chemistry for CO2 capture and conversion.

14.
Proc Natl Acad Sci U S A ; 120(11): e2218987120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877842

RESUMO

Selective electroreduction of carbon dioxide (CO2RR) into ethanol at an industrially relevant current density is highly desired. However, it is challenging because the competing ethylene production pathway is generally more thermodynamically favored. Herein, we achieve a selective and productive ethanol production over a porous CuO catalyst that presents a high ethanol Faradaic efficiency (FE) of 44.1 ± 1.0% and an ethanol-to-ethylene ratio of 1.2 at a large ethanol partial current density of 501.0 ± 15.0 mA cm-2, in addition to an extraordinary FE of 90.6 ± 3.4% for multicarbon products. Intriguingly, we found a volcano-shaped relationship between ethanol selectivity and nanocavity size of porous CuO catalyst in the range of 0 to 20 nm. Mechanistic studies indicate that the increased coverage of surface-bounded hydroxyl species (*OH) associated with the nanocavity size-dependent confinement effect contributes to the remarkable ethanol selectivity, which preferentially favors the *CHCOH hydrogenation to *CHCHOH (ethanol pathway) via yielding the noncovalent interaction. Our findings provide insights in favoring the ethanol formation pathway, which paves the path toward rational design of ethanol-oriented catalysts.

15.
Proc Natl Acad Sci U S A ; 120(31): e2306399120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487070

RESUMO

Toll-like receptor 4 (TLR4) sensing of lipopolysaccharide (LPS), the most potent pathogen-associated molecular pattern of gram-negative bacteria, activates NF-κB and Irf3, which induces inflammatory cytokines and interferons that trigger an intense inflammatory response, which is critical for host defense but can also cause serious inflammatory pathology, including sepsis. Although TLR4 inhibition is an attractive therapeutic approach for suppressing overexuberant inflammatory signaling, previously identified TLR4 antagonists have not shown any clinical benefit. Here, we identify disulfiram (DSF), an FDA-approved drug for alcoholism, as a specific inhibitor of TLR4-mediated inflammatory signaling. TLR4 cell surface expression, LPS sensing, dimerization and signaling depend on TLR4 binding to MD-2. DSF and other cysteine-reactive drugs, previously shown to block LPS-triggered inflammatory cell death (pyroptosis), inhibit TLR4 signaling by covalently modifying Cys133 of MD-2, a key conserved residue that mediates TLR4 sensing and signaling. DSF blocks LPS-triggered inflammatory cytokine, chemokine, and interferon production by macrophages in vitro. In the aggressive N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease (PD) in which TLR4 plays an important role, DSF markedly suppresses neuroinflammation and dopaminergic neuron loss, and restores motor function. Our findings identify a role for DSF in curbing TLR4-mediated inflammation and suggest that DSF and other drugs that target MD-2 might be useful for treating PD and other diseases in which inflammation contributes importantly to pathogenesis.


Assuntos
Alcoolismo , Dissulfiram , Animais , Camundongos , Receptor 4 Toll-Like , Lipopolissacarídeos , Transdução de Sinais , Citocinas
16.
Proc Natl Acad Sci U S A ; 120(15): e2301009120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011185

RESUMO

In the state-of-the-art membrane industry, membranes have linear life cycles and are commonly disposed of by landfill or incineration, sacrificing their sustainability. To date, little or no thought is given in the design phase to the end-of-life management of membranes. For the first time, we have innovated high-performance sustainable membranes, which can be closed-loop recycled after long-term usage for water purification. By synergizing membrane technology and dynamic covalent chemistry, covalent adaptable networks (CANs) with thermally reversible Diels-Alder (DA) adducts were synthesized and employed to fabricate integrally skinned asymmetric membranes via the nonsolvent-induced phase separation technique. Due to the stable and reversible features of CAN, the closed-loop recyclable membranes exhibit excellent mechanical properties and thermal and chemical stabilities as well as separation performance, which are comparable to or even higher than the state-of-the-art nonrecyclable membranes. Moreover, the used membranes can be closed-loop recycled with consistent properties and separation performance by depolymerization to remove contaminants, followed by refabrication into new membranes through the dissociation and reformation of DA adducts. This study may fill in the gaps in closed-loop recycling of membranes and inspire the advancement of sustainable membranes for a green membrane industry.

17.
Proc Natl Acad Sci U S A ; 120(51): e2314264120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100418

RESUMO

The separator with high Young's modulus can avoid the danger of large-sized dendrites, but regulating the chemical behavior of lithium (Li) at the separator/anode interface can effectively eliminate the dendrite issue. Herein, a polyimine aerogel (PIA) with accurate nitrogen (N) functional design is used as the functional separator in Li metal batteries to promote uniform Li nucleation and suppress the dendrite growth. Specifically, the imine (N1) and protonated tertiary amine (N2) sites in the molecular structure of the PIA are significantly different in electron cloud density (ECD) distribution. The N1 site with higher ECD and the N2 site with lower ECD tend to attract and repulse Li+ through electrostatic interactions, respectively. This synergy effect of the PIA separator accelerates the interfacial Li+ diffusion on the Li anode to sustain a uniform two-dimensional Li nucleation behavior. Meanwhile, the well-defined nanochannels of the PIA separator show high affinity to electrolyte and bring uniform Li+ flux for Li plating/stripping. Consequently, the dendrites are effectively suppressed by the PIA separator in routine carbonate electrolyte, and the Li metal batteries with the PIA separator exhibit high Coulombic efficiency and stable high-rate cycling. These findings demonstrate that the ingenious marriage of special chemical structure designs and hierarchical pores can enable the separator to affect the interfacial Li nucleation behavior.

18.
Proc Natl Acad Sci U S A ; 120(48): e2314408120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983506

RESUMO

Sodium-sulfur (Na-S) batteries are attracting intensive attention due to the merits like high energy and low cost, while the poor stability of sulfur cathode limits the further development. Here, we report a chemical and spatial dual-confinement approach to improve the stability of Na-S batteries. It refers to covalently bond sulfur to carbon at forms of C-S/N-C=S bonds with high strength for locking sulfur. Meanwhile, sulfur is examined to be S1-S2 small species produced by thermally cutting S8 large molecules followed by sealing in the confined pores of carbon materials. Hence, the sulfur cathode achieves a good stability of maintaining a high-capacity retention of 97.64% after 1000 cycles. Experimental and theoretical results show that Na+ is hosted via a coordination structure (N···Na···S) without breaking the C-S bond, thus impeding the formation and dissolution of sodium polysulfide to ensure a good cycling stability. This work provides a promising method for addressing the S-triggered stability problem of Na-S batteries and other S-based batteries.

19.
Proc Natl Acad Sci U S A ; 120(1): e2211832120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577061

RESUMO

Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/metabolismo , Cisteína , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo
20.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36573474

RESUMO

Covalent inhibitors have received extensive attentions in the past few decades because of their long residence time, high binding efficiency and strong selectivity. Therefore, it is valuable to develop computational tools like molecular docking for modeling of covalent protein-ligand interactions or screening of potential covalent drugs. Meeting the needs, we have proposed HCovDock, an efficient docking algorithm for covalent protein-ligand interactions by integrating a ligand sampling method of incremental construction and a scoring function with covalent bond-based energy. Tested on a benchmark containing 207 diverse protein-ligand complexes, HCovDock exhibits a significantly better performance than seven other state-of-the-art covalent docking programs (AutoDock, Cov_DOX, CovDock, FITTED, GOLD, ICM-Pro and MOE). With the criterion of ligand root-mean-squared distance < 2.0 Å, HCovDock obtains a high success rate of 70.5% and 93.2% in reproducing experimentally observed structures for top 1 and top 10 predictions. In addition, HCovDock is also validated in virtual screening against 10 receptors of three proteins. HCovDock is computationally efficient and the average running time for docking a ligand is only 5 min with as fast as 1 sec for ligands with one rotatable bond and about 18 min for ligands with 23 rotational bonds. HCovDock can be freely assessed at http://huanglab.phys.hust.edu.cn/hcovdock/.


Assuntos
Algoritmos , Proteínas , Simulação de Acoplamento Molecular , Ligantes , Proteínas/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA