Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chembiochem ; 24(19): e202300358, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37423892

RESUMO

Cyanobacteriochrome (CBCR) cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, including the third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803, which binds phycoerythrobilin (PEB) to yield a bright orange fluorescent protein. Compared to green fluorescent proteins, the smaller size and lack of an oxygen requirement for fluorescence make Slr1393g3 a promising platform for new genetically encoded fluorescent tools. Slr1393g3, however, shows low PEB binding efficiency (chromophorylation) at ~3 % compared to total Slr1393g3 expressed in E. coli. Here we used site-directed mutagenesis and plasmid redesign methods to improve Slr1393g3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. Mutation at a single site, Trp496, tuned the emission over ~30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications for tuning relative expression of Slr1393g3 and PEB synthesis enzymes also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised up to a total of 23 % with combined sequence truncation and W496H mutation.


Assuntos
Escherichia coli , Synechocystis , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência , Synechocystis/química , Adenilil Ciclases/química , Mutação , Proteínas de Bactérias/metabolismo
2.
Photochem Photobiol Sci ; 22(2): 251-261, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36156209

RESUMO

Cyanobacteriochromes (CBCRs) are cyanobacterial linear tetrapyrrole-binding photoreceptors distantly related to phytochromes. Only the GAF domain is needed for chromophore incorporation and proper photoconversion of the CBCRs. Most CBCR GAF domains possess the canonical Cys residue stably ligating to the chromophore. DXCF-type CBCR GAF domains also possess a second Cys residue within the DXCF motif. This second Cys residue reversibly ligates to the C10 of the chromophore. The Cys adduct formation is mostly observed for the dark-adapted state but not for the photoproduct state. In this study, we discovered novel CBCR GAF domains with a DXCI motif instead of the DXCF motif. Since these CBCR GAF domains are categorized into two subfamilies (DXCI-1 and DXCI-2), the GAF domains from each subfamily were analyzed. Although the CBCR GAF domain belonging to the DXCI-2 subfamily showed orange/green reversible photoconversion without transient Cys ligation, the CBCR GAF domain belonging to the DXCI-1 subfamily showed reversible photoconversion between an orange-absorbing dark-adapted state and a blue-absorbing photoproduct state. This indicates that the second Cys residue is covalently bound to the C10 of the chromophore in the photoproduct state but not in the dark-adapted state. Since the covalent bond formation in the photoproduct state is atypical, site-directed mutagenesis was conducted to understand the molecular mechanism of this GAF domain. The Ile residue within the DXCI motif may be key for covalent bond formation in the photoproduct state.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Cianobactérias/química , Fitocromo/química , Mutagênese Sítio-Dirigida , Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Luz
3.
Photochem Photobiol Sci ; 22(6): 1415-1427, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781703

RESUMO

Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Ficobilissomas/metabolismo , Proteínas de Bactérias/química , Cianobactérias/química , Fotossíntese , Aclimatação , Fotorreceptores Microbianos/química , Fitocromo/química
4.
Photochem Photobiol Sci ; 21(11): 1961-1974, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35906526

RESUMO

Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. In plants, phytochromes play a central role in growth and differentiation during the entire life cycle. Phytochromes of plants and other groups of archaeplastida have a common evolutionary origin in prokaryotes, but the exact prokaryotic origin is as yet uncertain. Two possibilities are presently discussed: either, archaeplastidal phytochromes arose from the last eukaryotic common ancestor (LECA) or they arose from the cyanobacterial endosymbiont that gave rise to plastids. We first constructed standard phylogenetic trees based on N-terminal protein sequences of the chromophore module. As usual, variation of algorithms and parameters led to different trees. A relationship between cyanobacteria and archaeplastida was observed in 7 out of 36 trees. The lack of consistency between results obtained from variation of parameters of tree constructions reflects the uncertainty of archaeplastidal origin. To gain more information about a possible cyanobacterial and archaeplastidal relationship, we performed phylogenetic studies based on the amino acids that line the chromophore pockets. These amino acids are highly conserved and could provide more accurate information about long evolutionary time scales, but the reduction of traits could also lead to insignificant results. From 30 selected chromophore-binding amino acids, 6 were invariant. The subsequent studies were thus based on the information dependent on 24 or fewer amino acid positions. Again, multiple trees were constructed to get information about the robustness of relationships. The very low number of information-containing traits resulted in low bootstrap values and many indistinguishable leaves. However, the major groups fungi, bacteria, cyanobacteria, and plants remained united. Without exception, cyanobacteria and archaeplastida were always closely linked. In this respect, the results were more robust than those of the classic approach, based on long contiguous sequences. We therefore consider cyanobacteria as the most likely origin of archaeplastidal phytochromes.


Assuntos
Cianobactérias , Fitocromo , Fitocromo/química , Filogenia , Cianobactérias/química , Evolução Biológica , Plantas/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/química
5.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065754

RESUMO

Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.


Assuntos
Biliverdina/química , Cianobactérias/genética , Fotorreceptores Microbianos/química , Fitocromo/química , Substituição de Aminoácidos , Biliverdina/genética , Sítios de Ligação , Cianobactérias/metabolismo , Eletrônica , Cinética , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Fitocromo/genética , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise Espectral , Análise Espectral Raman , Tempo , Fatores de Tempo
6.
Angew Chem Int Ed Engl ; 58(7): 1934-1938, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30508317

RESUMO

The origin of the spectral shift from a red- to a green-absorbing form in a cyanobacteriochrome, Slr1393g3, was identified by combined quantum mechanics/molecular mechanics simulations. This protein, related to classical phytochromes, carries the open-chain tetrapyrrole chromophore phycocyanobilin. Our calculations reveal that the effective conjugation length in the chromophore becomes shorter upon conversion from the red to the green form. This is related to the planarity of the entire chromophore. A large distortion was found for the terminal pyrrole rings A and D; however, the D ring contributes more strongly to the photoproduct tuning, despite a larger change in the twist of the A ring. Our findings implicate that the D ring twist can be exploited to regulate the absorption of the photoproduct. Hence, mutations that affect the D ring twist can lead to rational tuning of the photoproduct absorption, allowing the tailoring of cyanobacteriochromes for biotechnological applications such as optogenetics and bioimaging.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Modelos Moleculares , Conformação Proteica , Espectrofotometria Ultravioleta
7.
J Biol Chem ; 290(47): 28502-28514, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26405033

RESUMO

Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Genoma Bacteriano , Raios Ultravioleta , Cianobactérias/metabolismo , Fotobiologia
8.
J Exp Bot ; 67(14): 4079-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217547

RESUMO

Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria.


Assuntos
Cianobactérias/metabolismo , Fotossíntese/fisiologia , Aclimatação/fisiologia , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fotorreceptores de Plantas/fisiologia
9.
Int J Biol Macromol ; 274(Pt 2): 133407, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925190

RESUMO

Cyanobacteriochromes (CBCRs) are distinctive tetrapyrrole (bilin)-binding photoreceptors exclusively found in cyanobacteria. Unlike canonical phytochromes, CBCRs require only a GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domain for autolyase activity to form a bilin adduct via a Cys residue and cis-trans photoisomerization. Apart from the canonical Cys, which attaches covalently to C31 in the A-ring of the bilin, some GAF domains of CBCRs contain a second-Cys in the Asp-Xaa-Cys-Phe (DXCF) motif, responsible for isomerization of phycocyanobilin (PCB) to phycoviolobilin (PVB) and/or for the formation of a reversible 2nd thioether linkage to the C10. Unlike green/teal-absorbing GAF proteins lacking ligation activity, the second-Cys in another teal-absorbing lineage (DXCF blue/teal group) exhibits both isomerization and ligation activity due to the presence of the Tyr instead of His next to the canonical Cys. Herein, we discovered an atypical CBCR GAF protein, Tpl7205g1, belonging to the DXCF blue/teal group, but having His instead of Tyr next to the first-Cys. Consistent with its subfamily, the second-Cys of Tpl7205g1 did not form a thioether linkage at C10 of PCB, showing only isomerization activity. Instead of forming 2nd thioether linkage, this novel GAF protein exhibits a pH-dependent photocycle between protonated 15Z and deprotonated 15E. Site-directed mutagenesis to the GAF scaffolds revealed its combined characteristics, including properties of teal-DXCF CBCRs and red/green-absorbing CBCRs (XRG CBCRs), suggesting itself as the evolutionary bridge between the two CBCR groups. Our study thus sheds light on the expanded spectral tuning characteristics of teal-light absorbing CBCRs and enhances feasibility of engineering these photoreceptors.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119379, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33401182

RESUMO

Cyanobacteriochromes (CBCRs) are an emerging class of photoreceptors that are distant relatives of the phytochromes family. Unlike phytochromes, CBCRs have gained popularity in optogenetics due to their highly diverse spectral properties spanning the UV to near-IR region and only needing a single compact binding domain. AnPixJg2 is a CBCR that can reversibly photoswitch between its red-absorbing (15ZPr) and green-absorbing (15EPg) forms of the phycocyanobilin (PCB) cofactor. To reveal primary events of photoconversion, we implemented femtosecond transient absorption spectroscopy with a homemade LED box and a miniature peristaltic pump flow cell to track transient electronic responses of the photoexcited AnPixJg2 on molecular time scales. The 525 nm laser-induced Pg-to-Pr reverse conversion exhibits a ~3 ps excited-state lifetime before reaching the conical intersection (CI) and undergoing further relaxation on the 30 ps time scale to generate a long-lived Lumi-G ground state intermediate en route to Pr. The 650 nm laser-induced Pr-to-Pg forward conversion is less efficient than reverse conversion, showing a longer-lived excited state which requires two steps with ~13 and 217 ps time constants to enter the CI region. Furthermore, using a tunable ps Raman pump with broadband Raman probe on both the Stokes and anti-Stokes sides, we collected the pre-resonance ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) data with mode assignments aided by quantum calculations. Key vibrational marker bands at ~850, 1050, 1615, and 1649 cm-1 of the Pr conformer exhibit a notable blueshift to those of the Pg conformer inside AnPixJg2, reflecting the PCB chromophore terminal D (major) and A (minor) ring twist along the primary photoswitching reaction coordinate. This integrated ultrafast spectroscopy and computational platform has the potential to elucidate photochemistry and photophysics of more CBCRs and photoactive proteins in general, providing the highly desirable mechanistic insights to facilitate the rational design of functional molecular sensors and devices.


Assuntos
Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias , Eletrônica , Luz
11.
Mol Cells ; 43(6): 509-516, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32438780

RESUMO

To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.


Assuntos
Cianobactérias/metabolismo , Fitocromo/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cor , Transdução de Sinal Luminoso , Fitocromo/química
12.
J Plant Physiol ; 217: 57-67, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28641882

RESUMO

Linear tetrapyrroles (bilins) are produced from heme by heme oxygenase, usually forming biliverdin IXα (BV). Fungi and bacteria use BV as chromophore for phytochrome photoreceptors. Oxygenic photosynthetic organisms use BV as a substrate for ferredoxin-dependent bilin reductases (FDBRs), enzymes that produce diverse reduced bilins used as light-harvesting pigments in phycobiliproteins and as photoactive photoreceptor chromophores. Bilin biosynthesis is essential for phototrophic growth in Chlamydomonas reinhardtii despite the absence of phytochromes or phycobiliproteins in this organism, raising the possibility that bilins are more generally required for phototrophic growth by algae. We here leverage the recent expansion in available algal transcriptomes, cyanobacterial genomes, and environmental metagenomes to analyze the distribution and diversification of FDBRs. With the possible exception of euglenids, FDBRs are present in all photosynthetic eukaryotic lineages. Phylogenetic analysis demonstrates that algal FDBRs belong to the three previously recognized FDBR lineages. Our studies provide new insights into FDBR evolution and diversification.


Assuntos
Pigmentos Biliares/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Oxirredutases/metabolismo , Bactérias/metabolismo , Bacteriófagos/metabolismo , Evolução Biológica , Cianobactérias/metabolismo , Fotossíntese , Filogenia , Alinhamento de Sequência
13.
J Phys Chem Lett ; 5(9): 1527-33, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26270091

RESUMO

The RcaE cyanobacteriochrome uses a linear tetrapyrrole chromophore to sense the ratio of green and red light to enable the Fremyella diplosiphon cyanobacterium to control the expression of the photosynthetic infrastructure for efficient utilization of incident light. The femtosecond photodynamics of the embedded phycocyanobilin chromophore within RcaE were characterized with dispersed femtosecond pump-dump-probe spectroscopy, which resolved a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates. These reactions were integrated within a central model that incorporated a rapid (200 fs) excited-state Le Châtelier redistribution between parallel evolving populations ascribed to different tautomers. Three photoproducts were resolved and originates from four independent subpopulations, each with different dump-induced behavior: Lumi-Go was depleted, Lumi-Gr was unaffected, and Lumi-Gf was enhanced. This suggests that RcaE may be engineered to act either as an in vivo fluorescent probe (after single-pump excitation) or as an in vivo optogenetic sample (after pump and dump excitation).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA